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THE CONTEXT 

The text by Lambert (1761) we will examine here occupies a pivotal place in the 

history of irrationality and transcendence. 

1. In the history of the number π, this first proof of irrationality is clearly 

crucial. 

2. It extends the proof of the irrationality of e given by Euler (1737) to that of 

all its powers. 

3. It marks the beginning of the precise formulation of the notion of 

transcendence, and sets out the corresponding conjecture about the two 

remarkable numbers e and π, problems that would be resolved by Hermite 

(1872) and Lindemann (1882) respectively. 

4. It constitutes an essential milestone on the road to negating the problem of 

squaring the circle, catalysing the resolution of a problem that had stagnated 

since it was first exposed in the 5th century BCE. 

5. In passing, Lambert defines what we now call hyperbolic functions, by 

justifying, with a supporting figure, the notion of hyperbolic trigonometry. 

 

If there is one mathematician who full recognises the value of Lambert’s text, 

it has to be Charles Hermite. After all, following his triumphant proof of the 

transcendence of e, he states in the introduction to a simplified demonstration of 

Lambert’s result: “All I can do is do what Lambert has already done, but in another 

way …” 
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Glossary 

 
Irrationality: A number is rational if it can be expressed as the quotient 
of two integers. If not, it is irrational. 

Transcendence: A number is transcendent when it is not the root of an 
equation with integer coefficients of any degree.  

Squaring the circle: Constructing a square with the same area as a unit 
circle using only a compass and a ruler. This amounts to constructing √π. 
 

 

 

THE MAN 

Johann Lambert was born in 1728 in Mulhouse (in what was then … Switzerland). 

A self-taught man, he was invited by Euler to become a fellow of the Academy of 

Berlin in 1764, and died in that city in 1777. 

Lambert’s most famous publications, besides the essay considered here, are 

about non-Euclidean geometry, cartography – his conformal projection is still one of 

the most widely used projections among geographers – and the study of perspective 

(including the construction of a mechanical device known as the “perspectograph”). 

    

Figure 1: Lambert’s column in Mulhouse, his home town (left). It is inscribed with a 
noon mark in memory of his astronomical work. Right, detail: Medallion in honour of 

Lambert at the base of the column.   
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THE METHOD 

The standard tool at the time of the pioneers was the theory of continued 

fractions. 

Euler had used it first to prove the irrationality of e in 1737.1 Nothing feels more 

natural once one has familiarised oneself with it. If the process of divisions does not 

terminate when the following algorithm is repeated2 

0 0 1 0 0
1

1 1y x [x ] x x [x ]
y x

        

where [x0], depending on its usage, indicates the integer part of x0, then the initial 

number x0 is irrational, as the non-termination proves! All Euler had to do was obtain 

a nice infinite continued fraction with perfectly regularly terms – albeit a little 

mysteriously – to adduce the irrationality of e: 

1e = 2+
11 12 11 11

4 ...









 

Or, written more concisely: [2,1,2,1,1,4,1,1,6,...1,1,2n,1,1...] 

  

Unfortunately, π proved itself a tougher nut to crack. As we can see in the 

example in the panel below, it is possible – using ever more precise decimal values – 

to obtain as many terms as one likes. But neither Euler, nor any other mathematician, 

has identified any regularity in this expansion … π therefore proves itself to be a “more 

complicated” number than e. The sequence of decimals, i.e. the series expansion  

n
n

n 0

d
10




  

is unpredictable for both e and π, but at least e establishes a regular form with another 

form of expansion. The same cannot be said of π. 

 

                                   
1. De Fractionibus continuis Dissertatio, 1737. 
2. With this algorithm x0 constructs x1, then x1 constructs x2, and so on and so forth. 
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Continued fractions 

 
All rational numbers can be written as x = a + 1/y, where a is an integer 
and y>1. We can therefore reiterate the method, which amounts to 
repeating Euclid’s algorithm (corresponding to Euclidean division). So, to 
expand = 314159/100000, we write successively: 
 
• 100000 = 7 x 14159 + 887 
• 14159 = 15 x 887 + 854 
• 887 = 1 x 854 + 33 
• 854 = 25 x 33 + 29 
• 33 = 1 x 29 + 4 
• 29 = 7 x 4 + 1 
 
Euclid’s algorithm terminates, and the same is true for any rational 
algorithm. Therefore 

1x = 3+
17 115 11 125 11 17

1










 

which, for convenience, can be written as: 
1 1 1 1 1 1 1x 3 ou 3,7,15,1,25,1,7,1

7 15 1 25 1 7 1
         

 

The “intermediary” fractions 

1 223
7 7

 
1 3333

1 1067
15

 


1 3553
1 1137 115

1

 




 

are known as reduced fractions. 

More generally, we can study fractions with any given terms, 

1 2 k

1 2 k

a a ax ... ...
b b b


  

 

and whose successive reductions (fractions truncated to rank n) are 
calculated by the following algorithm (which is very interesting as it does 
not contain any division):  
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n 1 n 1 n n 1 n 1A b A a A      

n 1 n 1 n n 1 n 1B b B a B      

A more elaborate strategy of attack is required, and this is what makes Lambert’s 

work so original. Here are the essential ingredients: 

1. Abandoning regular continued fractions (with a numerator of 1) and 

replacing them with fractions with any numerator; 

2. Formulating an associated criterion of irrationality; 

3. Using them to develop a trigonometric function, the tangent – and no longer 

simply a number; 

4. Operating by reductio ad absurdum: if π/4 were rational, tan (π/4) = 1 

would not be. 

The purpose is to show that each time the arc of a given circle is 
commensurable with the radius, the tangent of that arc is 
incommensurable; & that reciprocally, any commensurable tangent is not 
that of a commensurable arc. (§2) 

As with other problems of this kind, this marvellous tool would later be sacrificed 

at the altar of simplifications. Euler’s proof was supplanted by the proof attributed to 

Fourier (1815);3 Liouville himself, in his second article on the construction of 

remarkable transcendental numbers (1844), put aside the continued fractions he had 

originally used;4 while Hermite, in a letter to Borchardt (1873), provides proofs of the 

irrationality of π and π² that contain not a single continued fraction, even though, in 

their inspiration, they are indelibly marked by rational approximations constructed 

from continued fractions. Hermite himself felt some regret at this development:5 

The expression used by Lambert, which I avoid, nevertheless remains a result 
of the highest order, one that leads the way to curious and interesting research. 

 

 

                                   
3. See the Stainville text on BibNum. 
4. See the Liouville text on BibNum. 
5. Sur l’Irrationalité de la Base des Logarithmes Hyperboliques. Report of the British Association for Advancement of 
Science, 43rd Meeting, 1873. 

https://www.bibnum.education.fr/mathematiques/theorie-des-nombres/melange-d-analyse-algebrique-et-de-geometrie
http://bibnum.education.fr/mathematiques/theorie-des-nombres/propos-de-l-existence-des-nombres-transcendants
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HOW THE TEXT UNFOLDS 

Figure 2: Histoire de l’Académie royale des sciences et belles-lettres de Berlin 
(1761), which contains Lambert’s text. In this era the minutes were written in French. 

(Copy conserved at the University of Lille’s arts and humanities library.) 

 

The article is long, but – Lambert informs us at the bottom of the second 

paragraph – that is the price one has to pay if the reasoning is to be beyond reproach. 

And, once accepted, this principle seems a small sacrifice to make in the name of 

remarkable results! Indeed, it is these very results that make the text so much more 

than a straightforward proof of irrationality … 

To avoid getting into a muddle at this first reading, let’s map out the text’s plan 

and key paragraphs. 

 

 

Overview: §1–4 

Lambert insists on the necessity of absolute rigour because of what is at stake: 

the question of squaring the circle. After outlining a classic series for π, complete with 

vague argumentation – as if to give the reader an example of all that he rejects – he 

presents the problem: 
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No matter how vague this reasoning is, there are nevertheless cases where 
nothing more is required. But these cases are not those of squaring the circle. 

He goes on to recall the paradox of those obsessive “circle-squarers” (in 1775 

the Academy of Sciences actually refused to examine any more ‘solutions’, in order 

to prevent squarers from going insane):  

Most of those who seek [the solution] do so with an ardour that sometimes 
leads them to gravely doubt the most fundamental and established geometrical 
truths. Is it conceivable that they would be satisfied by what I have just said? 
Something completely different is needed. 

The text would indeed prove exemplary in its rigour. In that it contrasts sharply with 

the writings of Lambert’s near contemporaries, whether Euler before him or Legendre 

afterwards (1795), both of whom left uncertainties in terms of their sources of 

inspiration and the convergence of fractions they employ.  

 

Expansion of tan x – Act 1:  

The pleasure of discovery: §5–14 

Lambert starts with two classic series giving sin υ and cos υ, then forms their 

quotient and “attempts division”. Let’s imagine the following: 
3

1

2

2

R6tan
1 R2

  
 

 
 and 

3

2
6F( )

1 2

 
 


 

In the case of F (obtained by ignoring the remainders), one could very easily 

proceed with a view to obtaining a limited continued fraction expansion. One would 

simply need to replace the numbers by polynomials in υ, and the Euclidean division 

of integers by polynomial division, to obtain the start of the fraction:  

2F( )
1

3 ( )


 




  

 

Going up to the power of 5 in the numerator and the power of 4 in the 

denominator would confirm the 1 and 3 obtained and reveal a new term, etc. With 

this intuition to guide him, Lambert adds a careful calculation of the successive 

remainders. Below is the expansion he obtains – but does not demonstrate – for, as 
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Lambert was well aware (far more acutely than Euler), saying “and so on ad infinitum” 

is not enough. 

The calculation in detail 

 
 

3 2 2

2 2 2

1 16 6 2F( ) avec G( )
G( )1 1 12 2 6

     
       

    
 

Operating by division by increasing powers: 

 2 2 2
1 1 12 6 3

        

2
2

2 2 2

2

3G( ) 1 1 donc F( )
G( )1 3 16 2

3 2

   
       

    


 

 

 

What we should be able to do with it … §15–16  

The reader will no doubt have noticed that we have used  whereas Lambert 

seems to further complicate things by performing his operations with w = 1/. The 

reason for this is explained here: 

The problem posed by Euclid is to find the largest common divisor of two 
integers … This last supposition occurs each time 1/ is an integer. 

In this case, then, here is Lambert’s proof of irrationality: he used only integers, 

the algorithm does not terminate, and so the number tan  

will be an irrational quantity each time arc  is an aliquot part of the radius. 

At the end of §16 he concludes: 

This therefore is the use to which we can confine Euclid’s proposition. 

Reasoning by the absurd, as he envisages, would suppose that π/4 is rational 

(commensurable to the radius) but not necessarily that it has a numerator of 1 

(aliquot part). 
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It is now a question of extending it to all cases where the arc is commensurable 
to the radius. 

Indeed, Lambert had forewarned us of this as early as §3: 

But it should be noted that while Euclid applies it only to integers and rational 
numbers, I must use it another way … 

 

Expansion of tan x – Act 2: Forming reduced fractions: §17–22 

Now our hero simply has to resume his attack. The advantage of his heuristics 

is that they give him a continued fraction to consider a priori when he sets himself 

the task of proving that the fraction converges, and converges towards tan : 

Yet, by carrying over the quotients w, 3w, 5w, &c. as much as one likes, one 
would simply have to reduce them, to have fractions that express the tangent 
of v all the more exactly than if one had carried over a larger number of 
quotients. 

He presents the reduced fractions: it is an inverse calculation of our simplified 

expansions. He then demonstrates the (classic) formula of separately calculating the 

numerators and denominators of the reduced fraction An/Bn, which in modern notation 

we would write as: 

An+1 = (2n+1).w An - An-1 

Bn+1 = (2n+1).w Bn - Bn-1 

The algorithm is shown in a table calculating the first partial numerators and 

denominators. 

 

Expansion of tan x – Act 3: The demands of rigour: §23–34 

In this table, Lambert discovers the general explicit form of An and Bn. But one 

only ever finds what one is looking for ... In view of this study of convergence, what 

Lambert is hoping to find is an An close to the sine series – the numerator of tan  – 

and a Bn close to the cosine series – the denominator of tan . With this beacon to 

guide him he can safely conclude the determination, whereas a “human calculator” – 

even an experienced one – would get lost in the operational fog.  And, as it is out of 

the question to generalise without proof, for each n: 
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It is advisable, in order, here again, to avoid any form of induction, to give and 
demonstrate its general expression. 

This he manages at §29 for the denominator, and §30 for the numerator. 

For example: 
k

2k 1
n k,n

k 1

1 ( 1)A a
1 3 5... (2n 1) (2k 1)!







 

      

This is probably the only lacuna in his proof, in that he extends n towards infinite, 

invoking 

k,nn
lim a 1


  

to conclude. However, Lebesgue6 later showed that this point warranted much 

lengthier discussion. In addition, he concludes by emphasising the very high 

convergence quality of the approximants. This can be fully appreciated today – and 

more easily than in Lebesgue’s time – with the help of a computer-plotted image. He 

describes the difference between tan  and the reduced fraction An / Bn in the following 

terms: 

All these sequences are more convergent than any decreasing geometric 
progression.  

It would be inexact to say that this was the first continued fraction expansion of 

a function (and not a mere number). Euler had expanded exp (x) using differential 

equations. But, if we compare this expansion with our breakdown of Lambert’s proof 

into three stages, we see that Euler had completed only the first stage. This is 

therefore a remarkable turning point in the approximation of functions.  

                                   
6. Henri Lebesgue, Leçons sur les constructions géométriques, Gauthier-Villars, 1949 (rep. J. Gabay 1987). 
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Figure 3: Approximants of the tangent function used by Lambert.  
The notation f_n underneath the curves indicates the reduced function, taking into account 

the partial denominators up to ²/2n. 

 

Irrationality … At last! §35–51  

Here it is question of adapting any given continued fractions to the criterion Euler 

applied to regular continued fractions. Again, this is the “Use it, but differently” maxim 

from §3 and §16. Lambert therefore notes the expansion and the reduced fractions 

for  = Ф/ω, Ф and ω being integers. The idea is simple: if tan Ф/ω is rational – and 

also written as the quotient M/P of two integers – the partial quotients produced by 

the expansion of tan  will correspond to the application of Euclid’s algorithm to M 

and P. On one hand, the algorithm should therefore terminate; on the other, we will 
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be left with an infinite and strictly decreasing sequence of integers, hence the 

contradiction. This infinitely decreasing sequence derives from the fact that, after a 

certain rank, all the partial quotients are inferior to 1: Ф and ω are fixed, while the 

denominator is successively multiplied by 3, 5, 7, 9, etc. Lambert’s proof is long, 

whereas Lebesgue’s (op. cit.) runs to less than one page. To avoid losing sight of the 

bigger picture, readers are advised to skip over this passage at a first reading. It is 

simpler to accept the following lemma:7 

Let 1 2 k

1 2 k

a a ax ... ...
b b b


  

 a continued fraction such as k kk, 1 a b   , 

with ak and bk integers ≥ 1, so |x| < 1 and x is irrational. 

 It should also be noted that though the generalised continued fraction 

expansion of π had been widely known since Lord Brouncker (1655) – 

2 2 2 21 1 3 5 7 ...
1 2 2 2 2

 
    

, 

– the former criterion did not apply: the fraction did not converge rapidly enough. 

Lambert’s method was therefore truly groundbreaking! 

Paragraphs 52–72 are of no great interest to the modern-day reader, so we 

shall skip over them at this first reading.  

 

 

From circular functions to hyperbolic functions: §73–80  

As early as §4, just after noting the series expansions of cos and sin, Lambert 

informs the reader: 

[I]n what follows I will give two sequences for the hyperbola that will differ 
from these two only in that all the signs are positive … 

He therefore sets out two series, which he adds up in exponential terms, for 

example:  

                                   
7. Details can be found in Lebesgue’s book, op. cit. 
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k
2k 1

k 0

e e ( 1)
2 (2k 1)!

  




 
 

  

He then expands their quotient by observing that the only difference is the 

replacement of all the – signs with + signs: 

2

2

e e
e e 1

3
5 ...

 

 

 


 





 

The modern-day notations (cosh, sinh, tanh) are not yet present here, but that 

it is beside the point. Not content with observing a transition from one type to the 

other by changing  to i – Euler had got there before him! – Lambert is keen to 

provide a geometric interpretation. In the figure below, he shows the hyperbola x² - 

y² = 1 touching the circle x² + y² = 1: it is tangent with the circle at its apex A (1,0). 

 

Figure 4: Plate at the end of Lambert’s article (detail). We can see the line of the 
quadrant AD and the branch of the hyperbola AM. Arrows show the common (intersection) 

points M (on the hyperbola) and N (on the circle) (photograph: A. Juhel). 
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A common secant from the centre C of the two conics cuts the circle in N(x,y) 

and the hyperbola in M(ξ,η). Introducing the parameter u as double the area of the 

hyperbolic section AMCA, Lambert demonstrates that 

ξ = cosh (u), η = sinh (u), y/x = tan (φ) = tanh (u) = ξ / η 

Just as the functions cos (φ) and sin (φ) define the parameters of the circle, the 

functions cosh (u) and sinh (u) define the parameters of the hyperbola. This is the 

birth of hyperbolic functions, complete with detailed notations. 

 
 

Beyond Euler: The irrationality of exp(n) and exp(1/n): §81–88  

Though Euler had the expansion of tanh (u) at his disposal, he was anxious to 

identify regular continued fraction expansions, and for this reason could not go as far 

as the irrationality of e². Lambert’s method goes further: u and exp(u) cannot be 

simultaneously rational (§81): 

[E]very rational hyperbolic logarithm is that of an irrational number … Every 
rational number has an irrational hyperbolic logarithm. 

And, when u is an integer or the inverse of an integer, he concludes: 

These fractions demonstrate the extent to which the irrationality of the number 
e = 2,718281828... is transcendental, in that none of its [powers8] nor roots 
is rational … 

That grand word – transcendence – is finally unleashed, yet its meaning here 

remains vague: irrational beyond anything one could imagine. This meaning was 

already present in Lambert’s announcement at the end of §2: 

[This statement] again demonstrates the extent to which transcendental 
circular quantities are transcendental & beyond all commensurability. 

But the three final paragraphs go much further, showing the way forward both 

for Wantzel in his research on constructability, and Hermite in his demonstration of 

the transcendence of number e. 

 
 

                                   
8. [Translators’ note] Lambert uses the term dignités, which corresponds to the modern mathematical term powers.  
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Conjecturing about transcendence: Towards non constructability: §89–

91 

From the outset, Lambert’s tone is prophetic: 

Everything I have just shown of circular & logarithmic transcendental quantities 
seems to be founded on much more universal principles, but which are not as 
yet sufficiently developed. Here, however, is some idea. 

And lo and behold, there follows a modern definition of an algebraic number! 

Lambert not only provides a list of explicit examples suggesting an arbitrary 

“accretion” of radicals of all orders and algebraic operations: 

there is an infinitude of other [quantities] known as algebraic [quantities]: & 

such are all radical irrational quantities, like 32 , 3 , 4 , & c, 2 + 3 ,&c. & all 

the irrational roots of algebraic equations …  

More significantly, it is in these terms that he defines the roots of equations of 

any order with integer coefficients, though without an explicit formula: 

& all the irrational roots of algebraic equations such as, for example, those of 
the equations 3x 5x 1  , &c. 

The &c. (etc.) clearly suggests an indeterminate degree, and therefore 
5x 5x 1  , for which there is no known solution (Abel–Ruffini theorem), and more 

generally nx 5x 1  . He concludes with the following: 

& here is the theorem, which I believe can be demonstrated. 

I therefore state that no transcendental circular & logarithmic quantity can be 
expressed by a given radical irrational quantity, that refers to the same unity 
& contains no transcendental quantity. 

It is useful to specify the nature of the coefficients: e is the root of the equation 

x – e = 0, but the coefficients are not rational (referr[ing] to the same unity) and, if 

e were the coefficient, there would be a transcendental quantity. The theorem 

therefore states that, among others, e and π are not the roots of any equation with 

rational coefficients, or – and this amounts to the same thing once reduced to the 

same denominator – of any integer equation. 
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The concluding paragraphs consider the problems of constructability and 

squaring the circle. Though he provides no further demonstrations, Lambert’s vision 

is perfectly clear: 

Once this theorem is demonstrated in all its universality, it will follow that, 
since the circumference of a circle cannot be expressed by any radical quantity, 
nor by any rational quantity, there will be no way of determining it by any 
geometric construction. 

Squaring the circle would entail constructing √π – and therefore π – with a ruler 

and compass, yet 

anything that can be constructed geometrically involves rational and radical 
quantities. 

Here Lambert no doubt shows himself to be an informed reader of Descartes’ 

Geometry, in which the latter had shown how to construct square sums, products and 

roots. Equally, he is not oblivious to the fact that for 2,000 years, mathematicians 

had been trying (and failing) to solve a problem contemporary with that of squaring 

the circle: doubling the cube – or the Delian problem – which would equate to 

constructing 3 a , a being a given rational number. Drawing on this practical failure 

as conjectural evidence of a theoretical impossibility, he states: 

& the possibility that these can be indifferently constructed appears remote to 
say the least. 

It would be another three quarters of a century, however, before Wantzel (1837) 

could solve the question once and for all. Yet Lambert’s intuitions about non-

constructability are there in embryonic form in the conclusion to his article: 

It is clear that this is true for the arcs of all circles whose length or two 
outermost points are given either by rational quantities or by radical quantities. 
For, if the length of the arc is given, one would need to find its outermost points 
by using the chord, sine or tangent, or any other straight line, which, in order 
to be constructed, would be dependent on or reducible to one of the lines I 
have just mentioned. But as the length of the arc would be given by rational 
or radical quantities, these lines would be transcendental, & therefore 
irreducible to any rational or radical quantity. The same would be true if the 
two outermost points of the arc were given, and by that I mean by rational or 
radical quantities. For, in this case, the length of the arc would be a 
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transcendental quantity, which means irreducible to any rational or radical 
quantity, & in that, admitting no geometric construction. 

 

 

(February 2009) 

(version V2 slightly modified, March 2015) 

 (translated by Helen Tomlinson, published March 2015) 


