
           

1 

Évariste Galois’s memoir on the conditions  

for the solubility of equations by radicals (1831) 

 

 

by Caroline Ehrhardt 

History of Education Department,  
National Institute for Pedagogical Research (INRP) 

 

 

Évariste Galois submitted his Mémoire sur les conditions de résolubilité des 

équations par radicaux (Memoir on the conditions for the solubility of equations 

by radicals) to the French Academy of Sciences, one year before his death at the 

age of 21. This was the third version of Galois’s research on this subject: the first 

two manuscripts, which had already been communicated to the Academy, had 

been lost. This last work did not receive the Academy’s approval, despite an 

encouraging report in which Poisson and Lacroix invited the young 

mathematician to pursue his research with a view to honing his results. However, 

Galois devoted the final months of his life to another area of research – elliptic 

functions. He was killed in a duel in 1832, his memoir on equations still 

unfinished. This memoir would be published only in 1846, in the Journal de 

Liouville. 

 

Figure 1: Portrait of Évariste Galois by his brother. 
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In this memoir, Évariste Galois sought a necessary and sufficient condition 

for an equation to be solvable by radicals, i.e. for it to be possible to express its 

roots through algebraic operations involving the coefficients. In the early 19th 

century, mathematicians knew how to solve fourth-degree equations or less by 

explicitly calculating their roots. In 1826, the Norwegian mathematician Abel had 

succeeded in demonstrating a theorem, the exactitude of which had been 

anticipated since the work of Lagrange: an algebraic solution is impossible for 

fifth-degree equations or higher.
1
 In this context, Galois did not seek to obtain a 

formula that would make it possible to calculate roots, but rather a criterion to 

establish whether this calculation was possible or not. 

Second-degree equations 

 

For example, all second-degree equations (in the form ax2 + bx + c 

= 0) can be solved algebraically in the field of complex numbers. This 

involves calculating their discriminant: ∆ = b2 — 4ac. 

 

The two roots are then given by the formula: 

-b ± Δ -b ± i Δ
si Δ > 0 ou si Δ < 0

2a 2a
 

We see here that the roots are calculated using algebraic operations 

involving the coefficients a, b and c of the equation. The criterion 

given by Galois in his article does not make it possible to obtain 

these formulas; it simply guarantees that all second-degree 

equations are solvable in the field of complex numbers. 

 

@@@@@@@ 

1) THE “PRINCIPLES” 

Galois’s memoir begins by setting out the principles on which the analysis is 

based: the notion of adjunction and substitutions. According to the definition 

given by Galois, to adjoin a quantity to an equation means that it is considered 

known for the solution (see panel below); the rational functions thus used to 

express the roots are functions of the coefficients of the equation and of that 

quantity. This notion, traces of which can be found in the earlier work of Abel, 

was innovative compared to the research conducted in the 18th century: the 

                                                 
1. Niels Henrik Abel, “Démonstration de l’impossibilité de la résolution algébrique des équations générales qui 
passent le quatrième degree”, Crelle’s Journal, vol. 1, 1826; Joseph-Louis Lagrange, “Réflexions sur la théorie 
algébrique des equations”, Mémoire de l’Académie royale des sciences et belles-lettres de Berlin, 1770, p. 134–
215, 1771, p. 238–253. 
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reasoning of Lagrange and Ruffini
2
 was confined to numbers that could be formed 

from the coefficients of the equation. For Galois, the irreducibility of an equation 

is relative to the quantities that one adjoins to it, which implies that: 

When we thus agree to regard certain quantities as shown, we shall say 

that we adjoin them to the equation which it is required to solve … The 

adjunction of a quantity can render an irreducible equation reducible.
3
 

Adjoining a quantity 

 
Let’s take an example to shed light on this notion of adjunction. A 
second-degree equation with negative discriminant does not admit a 

real root (see previous panel). We say that it is irreducible in the field 
of real numbers. On the other hand, the equation becomes reducible 

if we move to the field of complex numbers, i.e. if we adjoin the 
quantity i, defined by i2 = -1. The roots are therefore expressed as 
functions of the coefficients of the equation and the quantity i. 

 

The second preliminary notion introduced by Galois is that of substitution, as 

“the passage from one permutation to another”. The idea of linking the study of 

equations to the study of the permutations of their roots dates back to the work 

of Lagrange and Vandermonde,
4
 published in the late 18th century.

5
 Indeed, one 

of the reports written in 1813 by the Academician Poinsot should be enough to 

convince us that in the early 19th century this principle was still considered a 

fruitful avenue of research in the theory of equations: 

The principles that regard this problem [algebraic solution] reside 

essentially in the theory of combinations and that of numbers. That is 

what one may demonstrate by the nature of things and, … if it is possible 

to advance further, it is only by ideas of the same genre and by a few new 

elements which are still missing from the theory of permutations.
6
 

Galois’s research was thus perfectly consistent with the issues of his day in 

terms of the means that were to be deployed. The definitions he gives for the 

terms “substitution” and “permutation” are borrowed from the articles published 

                                                 
2. Paolo Ruffini (1765–1822) was an Italian mathematician who in 1799 published a work in which he 
demonstrated that fifth-degree equations are not soluble by radicals. The exactitude of the proof he had put 
forward caused some controversy among mathematicians of the day. 
3. --Trans. Translation taken from Peter M. Neumann, The Mathematical Writings of Évariste Galois, European 
Mathematical Society, 2011, p. 109, available here. 
4. Alexandre Vandermonde (1735–1796) was a French mathematician close to Gaspard Monge. He was elected 
to the French Academy of Sciences in 1771. 
5. Lagrange, op. cit.; Alexandre Vandermonde, “Mémoire sur la résolution des equations”, Histoire de 
l’Académie royale des sciences, avec les mémoires de mathématiques et de physique tirés des registres de 
cette Académie, Paris, 1774, p. 365–416. 
6. Procès-verbaux des séances de l’Académie des sciences, vol. 5, session of 27 December 1813, p. 294. 

https://books.google.co.uk/books?id=fMh4KDMD_68C&pg=PA109&lpg=PA109&dq=%22When+we+thus+agree+to+regard+certain+quantities%22+galois&source=bl&ots=IqEiwB7up6&sig=LX0Vk9AGkGUiv_LaNduQPGRG-Ag&hl=fr&sa=X&ved=0ahUKEwjRvsv5o63PAhUFOBoKHUQ-BakQ6AEIHjAA#v=onepage&
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by Cauchy in 1815.
7
 It should be noted here that the theory of permutations 

remained little explored at the time, since Abel and Galois were the only two 

mathematicians to have exploited the results Cauchy had obtained. Furthermore, 

the articles of 1815 only sketched the outlines of the theory, which Cauchy would 

not flesh out more fully until 1844.
8
 This explains why Galois does not have a 

perfect mastery of these notions: he seems to know this work, as is shown by 

the allusion he later makes in Proposition VII, but the terms “groups of 

permutations” and “groups of substitutions” are often confused in his memoir. 

Thus Galois defines the group of an equation as the “group of permutations” of 

the roots, while also stating that: 

in the group of permutations considered here, the order of the letters is 

not of importance, but rather only the substitutions of the letters by which 

one passes from one permutation to another.
9
  

Permutations and substitutions – 

Example of a group of substitutions 
 

– A permutation of n distinct letters is an ordered list of these letters. 
For example: (1,2,3,4,5) and (2,5,3,1,4) are permutations of 5 

letters. 
– Substitutions are operations that consist in moving from one 
permutation to another. In 1844, Cauchy introduced a two-line 

mathematical notation of this process: 

For example: the substitution 
1,2,3,4,5

2,5,3,1,4

 
 
 

transforms 1 into 2, 2 into 

5, 4 in 1 and 5 into 4. 
If we confine ourselves to the modern definition of a group, a group 

is formed by substitutions of n letters and not by permutations. 
What Galois calls a “group of permutations” is the set, which he 
notes in a “matricial” form. This is not a group in the modern sense 

of the term. On the other hand, the quotation shows that he was also 
interested in the (“real”) group that can be constructed from these 

permutations, although this is not mentioned explicitly. 
 

@@@@@@@ 

 

                                                 
7. Augustin-Louis Cauchy, “Sur le nombre de valeurs qu’une fonction peut acquérir lorsqu’on y permute de 
toutes les manières possibles les quantités qu’elles renferment”, Journal de l’École polytechnique, n° 10, 1815, 
p. 1–28; Augustin-Louis Cauchy, “Sur les fonctions qui ne peuvent obtenir que deux valeurs égales et de signes 
contraires par suite des transpositions opérées entre les variables qu’elles renferment”, Journal de l’École 
polytechnique, n° 10, 1815, p. 29–112.  
8. Augustin-Louis Cauchy, “Mémoire sur les arrangements que l’on peut former avec des lettres données, et sur 
les permutations ou substitutions à l’aide desquelles on passe d’un arrangement à un autre”, Exercices 
d’analyse et de physique mathématique, vol. 3, 1844, p. 151–252. 
9. --Trans. Translation taken from David A. Cox, Galois Theory, 2nd ed., John Wiley and Sons, 2012, p. 343, 
available here.  

https://books.google.co.uk/books?id=vBKrOch1AkYC&pg=PA343&lpg=PA343&dq=galois+%22in+the+group+of+permutations%22&source=bl&ots=zukobwc65u&sig=9RgU-RLu2SnySUl8OcZjeRbEDmg&hl=fr&sa=X&ved=0ahUKEwjD9ozo1aDPAhWFtxoKHaEjDI8Q6AEIHjAA#v=onepage&q=galois%20%22in%20
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To give an example of a group of substitutions in the modern sense 
of the term, the group S3 of the substitutions of three elements 1, 2, 

3 is composed of the six following substitutions: the identity Id, the 

circular substitution s1 
1,2,3

3,1,2

 
 
 

, the circular substitution s2 
1,2,3

2,3,1

 
 
 

, 

the transposition t1 
1,2,3

1,3,2

 
 
 

, the transposition t2 
1,2,3

3,2,1

 
 
 

, and the 

transposition t3 
1,2,3

2,1,3

 
 
 

. The table of this group is as follows: 

 ID s1 s2 t1 t2 t3 

ID ID s1 s2 t1 t2 t3 

s1 s1 s2 ID t3 t1 t2 

s2 s2 ID s1 t2 t3 t1 

t1 t1 t2 t3 ID s1 s2 

t2 t2 t3 t1 s2 ID s1 

t3 t3 t1 t2 s1 s2 ID 
 

Another thing that can be noted is that Galois does not adopt the two-line 

notation for substitutions introduced by Cauchy. For the modern-day reader, the 

abstruseness of Galois’s memoir is mainly due to its rather approximate use of 

the notions of substitution and permutation. The same must have been true for 

the mathematicians of the early 19th century, who were unaccustomed to using 

them in an abstract sense: though Lagrange had used them in his research on 

equations, this was more as a calculatory method than as a conceptual tool. 

The statement of “Principles” ends with four lemmas relating to the theory 

of equations. The first is stated as follows: 

Lemma I. An irreducible equation cannot have any root in common with a 

rational equation without dividing it.
10

 

This lemma signifies that if an irreducible polynomial P has a root in 

common with another polynomial f, f can thus be written as: f(x) = 

P(x) × Q(x) 

It might be useful here to give an example from the field of real 

numbers.  

The polynomial P(x) = x2 + 1 is irreducible in R. Its roots in C are i 

and – i.  

The polynomial f(x)= x3 - x2 + x - 1 is not irreducible in R (since 1 is 

its root). In C, its roots are 1, i and – i. 

We can write: f(x)= P(x) × (x-1) 

                                                 
10. Peter M. Neumann, op. cit., p. 111. 
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This result was not unprecedented: it had already been demonstrated by 

Abel in his Mémoire sur une classe particulière d’équations résolubles 

algébriquement (Memoir on a particular class of soluble algebraic equations), 

published in Crelle’s Journal in 1829. 

@@@@@@@ 

For the second and third lemmas, Galois takes up the fundamental idea of 

similar functions that Lagrange had developed in his Réflexions sur la résolution 

algébrique des équations of 1770: he seeks a function V of the roots taking n! 

distinct values by permutations of the roots. This function will thus be similar to a 

function that gives the n roots of the initial equation: 

Lemma II. Given an arbitrary equation which has no equal roots, of which 

the roots are a, b, c, …, one can always form a function V of the roots, 

such that none of the values that are obtained by permuting the roots in 

this function in all possible ways will be equal. 

Lemma III. The function V being chosen as is indicated in the preceding 

article, it will enjoy the property that all the roots of the proposed 

equation will be rationally expressible as a function of V.
11

 

Rational and resolvent expression 
 
A rational function is the quotient of two polynomials. 

In the sense that Galois intends, to say that the roots can be 

expressed rationally as a function of V means that each root xi can be 

written in the form 
i

P(V, a, b...)
x =

Q(V, a, b...)
, where P and Q are two 

polynomials. 

The following can be given as an example of a resolvent: V(x,y) = x² 

+ y², where x and y are solutions to a second-degree equation X² + 

PX + Q = 0, is invariant by the two substitutions of the group S2, and 

Id and s substitution of the roots. In this case it can be shown that V 

can be rationally expressed as a function of the coefficients of the 

equation: V (x,y) = (x+y)² - 2xy = P² - 2Q. 

 

Here again, Galois adopts a solution schema that is consistent with the 

algebraic practices of his time, and which consists in deploying an intermediary 

stage by defining a resolvent function. 

                                                 
11. Peter M. Neumann, op. cit., p. 111. 
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Figure 2: The famous “Note XIII” in Lagrange’s work on equations. Galois studied 

these equations as a lycée student. 

 

2) THE THEORY 

The original parts of Galois’s research, which he calls his “theory”, only start after 

he reiterates these principles, which, according to him, are too well known for it 

to be necessary to provide new demonstrations. 

Many demonstrations are barely sketched out, or are simply absent 

from the Mémoire sur les conditions de résolubilité des équations par 

radicaux. On this point, it is often said that Galois died too young and 

suddenly to perfect his theory. 

However, it is highly likely that the absence of demonstrations for 

these lemmas was a choice and not a necessity. Indeed, in the 

preface that he had written to the Mémoire, and which was not 

published in the Journal de Liouville, Galois explains that it is not 

useful to “to repeat the rudiments of the whole theory, on the pretext 

of presenting it in an intelligible form”.12  

 

Proposition I defines the “group of an equation” as a group of permutations 

of the roots:  

                                                 
12. Évariste Galois, “Préface à deux mémoires d’analyse pure”. 
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Let an equation be given of which the m roots are a, b, c, … . There will 

always be a group of permutations of the letters a, b, c, … which will enjoy 

the following property: 

1. That every function of the roots invariant under the substitutions of 

this group will be rationally known; 

2. Conversely, that every function of the roots that is rationally 

determinable will be invariant under the substitutions.
13

 

Galois’s demonstration consists in exhibiting the “group” and showing that it 

satisfies the required properties. It should be noted, however, that Galois has no 

intention of proving that this is a group in the modern sense of the term: for him, 

the group of an equation is an organised set – i.e. one that can be written in the 

form of a table – and not a set for multiplication. 

Propositions II and III then establish the link between the group of the 

equation and the adjoined quantities: the adjunction of a new magnitude entails 

the group of the equation being divided into a certain number of smaller and 

comparable groups (in modern language, these are normal sub-groups of the 

initial group). We can then recommence this reasoning with the new group 

thereby obtained, and so and so forth. The demonstration of Proposition III is 

incomplete: in fact, the form of the factorisation after the adjunction of a new 

quantity of the equation, of which the resolvent V is a root, is not as “clear” as 

Galois says it is, and this point would receive attention from many of Galois’s 

successors. As for Proposition III, it is stated without any demonstration. 

In Proposition II, Galois states that if the adjunction of a root r of an 

auxiliary equation renders the given equation reducible, then the 

polynomial P of which the resolvent is the root can be factorised as 

follows:  

P(V) = f(V,r)  f(V,r’)  f(V,r’’)…, where r, r’, r’’, … are the different 

roots of the auxiliary equation of the resolvent, and where function f 

remains the same. 

However, this decomposition is far from obvious since, after the 

adjunction of a quantity r, if one applies the usual results of the 

factorisation of polynomials, one obtains a decomposition in the 

following form: 

P(V) = f(V,r)  f1(V,r)  f2(V,r)…, where the functions fi are different 

but involve the same variables V and r.  

 

                                                 
13. Peter M. Neumann, op. cit., p. 114– 115. 
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In Proposition V in the memoir, Galois shows that the initial equation is 

solvable by radicals, if, at the end of the process, one obtains a group that now 

contains only one element: 

To solve an equation, it is necessary to reduce its group successively to 

the point where it does not contain more than a single permutation.
14

 

Example of Propositions II and V applied to a particular 

fourth-degree equation 

 

Take the equation x4 – 5x² + 6 = 0; it factorises into (x² - 2)(x² - 3) 

= 0 and its roots are ±√2 et ±√3. There originally exists a group of 4 

substitutions permuting these roots: Id, X (inversing √2 and - √2, 

leaving √3 and - √3) fixed, Y (inversing √3 and - √3, leaving √2 and - 

√2 fixed), Z = XoY (inversing √2 and - √2, inversing √3 and - √3). 

This is the Galois group specific to this equation.  

By applying Proposition II, and by successively adjoining the 

quantities √2 and √3, the Galois group is gradually reduced 

(mathematicians also say “unscrewed”). For example, in the field of 

rationals to which one adjoins √3 (the set of “quadratic integers” a + 

b√3, noted as Q[√3]), there exist new relations between roots within 

Q[√3], made possible by this extension of Q (for example, 2√3 × √3 + 

√3 × (-√3) = 3, the polynomial of the roots √3 and -√3, in bold, which 

remains in Q[√3]). In this extension, the substitutions Y and Z no 

longer preserve this polynomial, while X (inversion of the roots √2 

and -√2) continues to preserve it: the initial Galois group Id, X, Y, Z 

has been reduced to its sub-group Id, X. When one adjoins √2, in the 

field Q[√2,√3]) composed of numbers of the type a + b √2 + c √3 + 

d √2 √3, the only substitution that conserves the polynomial is Id: to 

take Galois’s expression, we have “reduced” the group “to the point 

where it does not contain more than a single permutation”. The 

equation is therefore solvable by radicals. 

This example illustrates Proposition II – “If one adjoins to a given 

equation the root r of an irreducible auxiliary equation, one of two 

things will happen: either the group of the equation will not be 

changed, or it will be partitioned into p groups each belonging 

respectively to the proposed equation when one adjoins to it each of 

the roots of the auxiliary questions” – as well as Proposition V 

mentioned above – “To solve an equation, it is necessary to reduce 

its group successively to the point where it does not contain more 

than a single permutation”. 

 

                                                 
14. Peter M. Neumann, op. cit., p. 121. 
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However, instead of stating his result as a theorem, Galois algorithmically 

describes the mechanism connecting the process of adjunction to that of the 

decomposition of the group. 

Such a writing technique was unusual in the early 19th century, since it 

provides a narrative in which the intermediary results are not explained, rather 

than a calculatory proof. Thus, although Proposition V makes it possible to 

understand why some equations will be soluble, and others not, it does not say 

how one should go about solving it in practical terms, using a specific equation to 

respond to the question. According to the criteria of the early 19th century, 

where the utility of mathematics still lay above all in its practical applicability to 

concrete phenomena, such a conclusion was in no sense satisfactory. In essence, 

this was what Poisson wrote in his report: 

[The memoir] does not contain the condition of solvability of equations by 

radicals … The condition of solvability, if it exists, should have an external 

character, that can be tested by examining the coefficients of a given 

equation, or, at most, by solving other equations of a lesser degree than 

that proposed.
15

 

In Propositions VII and VIII, Galois applies the preceding results to 

irreducible first-degree equations. Proposition VII states the criterion in the 

language of groups: 

If an irreducible equation of a prime degree is soluble by radicals, the 

group of this equation must contain only substitutions of the form xk, 

xak+b, a and b being constants. 

Finally, the criterion of solvability is translated in the traditional language of 

equations in Proposition VIII: 

In order that an irreducible equation of prime degree should be soluble by 

radicals, it is necessary and sufficient that any two of its roots being 

known, the others may be deduced from them rationally. 

The solution group of an equation 

 

The notion of the group appears in Galois’s memoir. He writes “if in a 

group one has the substitutions S and T then one is sure to have the 

substitution ST”. One hundred years later, Gustave Verriest, in a text 

of 1934 entitled Évariste Galois et la théorie des équations 

                                                 
15. Procès-verbaux des séances de l’Académie, session of 4 July 1831, t. 9, p. 660; --Trans. Translation taken 
from Laura Toti Rigatelli, Évariste Galois 1811–1832, trans. John Denton, Birkhäuser Verlag, 1996, p. 90. 
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algébriques,
16

 suggested that Galois had enabled the discovery that 

“the crux of the problem lies not in the direct search for the 

magnitudes to adjoin, but in the study of the nature of the group of 

the equation. This group expresses the degree of indiscernibility of 

the roots: it thus characterises not what we know of the roots, but 

that which we do not know … thus it is that two equations of different 

degrees, but with similar groups, are solved in the same way. 

Therefore, it is no longer the degree of an equation that measures 

how difficult it is to solve, but the nature of its group.” In fact, the 

solution group of a given equation measures the degree of 

indiscernibility of its solutions, or, put differently, the symmetries of 

the equation. 

 

 
 

3) ARCHITECTURE AND CONCEPTION OF THE MÉMOIRE  

The Mémoire sur les conditions de résolubilité des équations par radicaux is 

written in a very concise style; some demonstrations are absent and others 

incomplete. This incompleteness is often put down to the tragic circumstances of 

Galois’s life and his premature death, which, it is argued, prevented him from 

writing up his research after the early versions were lost. Yet analysis of the 

original manuscript shows that this work, although incomplete, had already been 

corrected and reread several times over. Moreover, Galois judged it sufficiently 

complete to submit to the Academy. It is therefore a fully-fledged piece of 

research, and not a summary of results previously obtained: although the 

memoir existed in a more complete state in previous versions submitted to the 

Academy, the explanations that are presumed missing are not there precisely 

because Galois deliberately decided not to include them in the last version, or 

because he himself did not yet possess the necessary demonstrations. If we 

overlook the impression of incompleteness and the imprecise vocabulary that 

characterise the entire first memoir, and give a wholesale impression of 

obscurity, we notice that Galois treated the three different parts in noticeably 

different ways. These reveal the manner in which he conceived his research. 

The “Principles” with which the memoir begins consist in “a few definitions 

and a series of lemmas known to all”. The first four lemmas are separated from 

the rest of the presentation, and Galois does not attach any importance to their 

                                                 
16. Quoted by Norbert Verdier, Pour la science- les Génies de la science, Evariste Galois, February–May 2003 
(see “Pour en savoir plus” tab on BibNum). 
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demonstration: for him they fell within the classical theory of equations and were 

not part of the theory he wished to establish. 

Propositions I to V form the heart of the memoir, setting out what would 

later be described as “Galois theory”. In this part, Galois establishes the principle 

of correspondence between equations and groups of substitutions. These 

propositions are the object of abstract proofs, in the sense that the results are 

described in French and not written in mathematical language, and are pursued 

without an explicit explanation of the calculations from which they result or in 

which they culminate. The idea is to set out “the functioning of the analysis”, to 

use one of Galois’s expressions, that is to say, to describe how the process must 

unfold, and not to go through all the operations. 

The concision of this section was not due to lack of time. Among Galois’s 

papers one finds a first version of Proposition I on the group of an equation, very 

probably dating from June 1830, and including a demonstration more detailed 

than that found in the final version. The same is true of Proposition III, of which 

the initial version – crossed out during the correction stage – is in fact an 

application of the previous proposition to equations in the form “xp = a”, with 

which Galois must have familiarised himself by reading Gauss’s Disquisitiones 

Arithmeticæ. In the final version of the manuscript, it was replaced by a much 

more general theorem, which also seems to derive from Proposition II but is 

stated without a demonstration. 

The aim of Galois’s editing work seems to have been to get right to the 

essential points. Indeed, the memoir of the conditions for the solubility of 

equations offers a fine example of mathematical thought under construction. 

Galois did not leave us the genealogy of his work, but it was most probably by 

familiarising himself with the traditional theory of equations, and by learning to 

manipulate substitutions and permutations on the basis of specific equations, 

using the traditional calculating method of Lagrange or Abel, that he formulated 

his initial ideas on the link between solvability and the group of substitutions of 

roots. Some of the extant drafts contain numerous algebraic calculations, 

sometimes juxtaposed on the same sheet with manipulations of the permutations 

of integers: it was by dint of practice and training – in a sense, by immersing 

himself in classical theory – that Galois arrived at his initial results. However, 

none of these calculations was retained in the definitive draft of his work. 
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Figure 3: An example of one of Galois’s extant drafts  

(some are much clearer). 

 

These few examples show that Galois was not expressly trying to avoid 

calculations, nor to strive for the greatest possible degree of generality. Concrete 

algebraic manipulations of specific cases of equations are an integral part of his 

research. It was only once he had inductively understood the principles 

governing these calculations that he removed them from his work. As Galois 

explains in the preface which Liouville did not publish,
17

 these are mere “details” 

over which “the mind no longer has time to pause”. They would remain in draft 

form and were ultimately absent from the drafting of this – very sparse – 

memoir. Once he was sufficiently at ease with the calculations, Galois’s approach 

was to extract their essence in his attempt to understand what makes an 

equation soluble. His general theory was thus formulated through a permanent 

to-ing and fro-ing between this theory and concrete cases, which became its 

applications. 

The third part of the memoir, comprising Propositions VI to VIII, is an 

illustration of the preceding theory in the case of irreducible first-degree 

equations (i.e. where the degree is a prime number). This application is 

approached in a more “calculatory” manner, although that term may seem 

surprising when talking about Galois’s mathematics. However, while the 

operations are not always set out in the text, their result appears in the text in 

algebraic language and not in French. For example, Galois makes the effort to 

                                                 
17. This preface is included in Galois’s Complete Works: Évariste Galois, Ecrits et mémoires mathématiques, 
édition critique intégrale des manuscrits et publications d’Evariste Galois par Robert Bourgne et Jean-Pierre 
Azra, Paris, Gauthier-Villars, 1962 (reed. Jacques Gabay, 1997). 
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write the last group involved in the solution of irreducible first-degree equations, 

and to express the substitutions he uses: the presentation is therefore more 

concrete than for Propositions I to V. However, the application here does not 

have any practical purpose, since Galois does not provide an algorithm that 

would make it possible to decide if a given equation is soluble by radicals: the 

final result remains theoretical. Rather than providing a practically exploitable 

criterion, the aim of this application to first-degree equations thus seems to be to 

elucidate the general principles according to which Propositions I to V are 

formulated (indeed, Galois was aware that he had not managed to express these 

principles with as much precision as would have been desirable). His indifference 

to the practical feasibility of his reasoning is clear when, to conclude, he gives 

the example of the fifth degree: he writes down the group of substitutions that 

such an equation must have in order to be soluble, rather than showing how to 

decide on the solubility of a given equation of which the numerical coefficients 

have been determined in advance. 

@@@@@@@ 

The Mémoire sur les conditions de résolubilité des équations is often 

described as a prophetic text, one too ahead of its time to be understood by its 

contemporaries. Nevertheless, it is based on knowledge and know-how that 

would have been familiar to mathematicians in the early 19th century, since it 

draws on a mathematical tradition stretching back to Lagrange and attempts to 

play on the theory/applications dialectic that was so dear to the Polytechnicians 

who then dominated Parisian mathematical circles. Recognising that Galois’s 

Mémoire was not inaccessible to his contemporaries and that it engaged with the 

issues of its day is not to deny its mathematical value; it simply entails taking 

the historical value of this document seriously as well. 

 

 

 

 

(December 2008) 

(Translated by Helen Tomlinson, published October 2016) 

 

  


