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As an Artillery Officer and École polytechnique student (X1895), André-Louis 

Cholesky was both confronted with first-hand reality (such as at the military front 

where he was eventually killed in 1918) and the demanding nature of making his 

theoretical ambitions official. For this reason, when duty called him to various 

geodetic works in France and abroad, he took the time to write up a text to 

explain the method (we will not yet use the term algorithm) that he had just 

developed for simplifying calculations. This is the manuscript (which dates back 

to 1910 but remained in family records until 2005) that allows us to rediscover 

his works1. While we are already fairly aware of this method, it is this text (which 

is in a version that is ready for publication) that will shed some light on the 

theoretical and practical ambitions of Cholesky rather than just the simple result. 

 

 

Figure 1. André-Louis Cholesky in 1917  
 

                                                 
1. These works were known before the manuscript’s rediscovery thanks to a note from Commander Benoît, 
Cholesky's colleague in the geographic services of the army: the note was on a method for solving normal 
equations by applying the method of least squares to a system of linear equations of a number less than those 
of unknowns (the process of Commander Cholesky), Bulletin géodésique, 2(1924) 67-77. 

http://www.rogermansuy.fr/
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The introductory paragraph reminds us of the necessity of the treatment of 

“experimental data”. In “the case for the adjustment of geodetic networks” 

(which especially interested Cholesky, who took part in topographic studies in 

France, North Africa and Romania...) or other “research on the laws of physics”, 

we often return to a numerical solution of the heavy linear systems whose 

coefficients derive from physical measurements. The preliminary step here is to 

apply “the method of least squares”. If the system accepts a greater number of 

equations than unknowns (as is the case for geodetic topographic studies), it is 

possible (and even common if we take into account the measurement errors) 

that it does not accept exact solutions. Carl Friedrich Gauss developed, in order 

to refine the position of the asteroid Ceres2, an effective method for an 

approximate solution: in order to “solve” at best the system AX=B where A is the 

matrix of (measured) coefficients of the system, X the vector of unknowns and B 

a second member vector (often from measurements), it is enough to minimise 

the function X → ||AX-B||2 which, to a vector X, includes the sum of the squares 

of the AX-B components (the Euclidean norm is then interpreted as a square 

error). This minimum is then obtained for the vector X solution of the system of 

so-called normal equations (there is this time as many equations as unknowns) 

tAAX=tAB. Note that the initial situation can thus be reduced to a square system 

of which the matrix M = tAA is symmetric (a point that will be fundamental to the 

detailed algorithm that follows). Cholesky does not mention it but the then 

obtained matrices M are also positive (that is to say, that for any column vector 

X, tXMX is a positive number) and, in practice, the majority are also invertible – 

what he uses without much clarification is the rule in the geodetic calculations 

where there happens to be more linearly independent equations than unknowns. 

 

A Matrix and its Transpose 

 

We define for any matrix M a new matrix called the transpose of M, 

denoted tM, by switching the roles of rows and columns: the coefficients 

of the row of index i of M are the coefficients of the column of index i of 
tM. Matrices equal to their transpose have many properties: they are 

“symmetric” since the coefficients in symmetric positions in relation to 

the main diagonal are equal.  
 

                                                 
2. In January 1801, Italian astronomer Giuseppe Piazzi discovered in secret an asteroid that he named Ceres. 
Unfortunately, after 41 nights, he lost sight of it in the glare of the sun. Gauss assumed that Ceres had an 
elliptical orbit, by observing the parameters via the method of least squares, and was able to predict the time 
and location of its reappearance (which Heinrich Olbers would observe). Despite his prowess at the observatory 
in Göttingen, when Gauss began his geodetic work, he came across the same problems with linear systems. 
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In order to follow the method of Cholesky, we will denote T as the matrix of 

coefficients (αi
j)i,j, Y the column vector of coordinates (γj)j, and likewise X of 

coordinates (λi)i and C of coordinates (Ci)i. If we know how to solve a matrix 

system (the system (I) given in figure 2, which can be rewritten as TY+C = 0),  

 

 

then by these same operations (as has been indicated), we know how to 

solve the matrix systems tT and thus, in particular, the system (II) Y=tTX. As a 

result, by combining these two steps (which are in fact but the one calculation 

step), we can get the same solution to the system TtTX+C=0 (the system (III)): 

 

 

 

Furthermore, the matrix TtT, whose coefficients are denoted as Aq
p by 

Cholesky, has the advantage of being symmetric: “Aq
p = Ap

q”. These seemingly 

insignificant comments indeed prove to be at the heart of the method: for if a 

symmetric matrix A (such as those that occur naturally after the minimalization 

of least squares) is written as A=TtT, then, consequently, in order to solve a 

matrix system A, it is actually enough to know how to solve a matrix system T. 

Therefore, we propose to solve a system of equations of the form III. 



                                                                                                          4 

In this objective, set out by Cholesky, the method is now clear: we must 

decompose the matrix system (III) as a product TtT where T is a matrix of a 

system (I) that can be solved easily. Cholesky’s idea involves placing himself in 

“the case where the first equation contains only γ1, the second γ1, γ2, the third 

γ1, γ2, γ3, and so on”, i.e., in the case in which the matrix T is lower triangular. 

In order to obtain T from the matrix A, it is enough to write the n(n+1)/2 

equations (that are non-linear), obtained by identifying A and TtT, of which the 

unknowns are the coefficients of T. Cholesky subsequently noticed that it is 

actually easier to solve these equations by considering them one after the other: 

We therefore see that all coefficients of the system VI can be 

calculated line by line. 

 

However, he fails to mention that he is actually making a hypothesis: in 

order to be able to find all coefficients of the line p, we need to be able to divide 

by αp
p, and it is therefore important that this coefficient is not zero. This actually 

comes from the invertible character (or the positive character, as equivalently 

defined) of the matrix of the system that is obtained by the method of least 

squares with many independent equations. This concludes the explanatory phase 

of the method, allowing for the effective solution of symmetric linear systems. 

@@@@@@@ 

Yet, Cholesky is not content with just providing a formula; he also strives to 

explain how to carry out the calculations and comment on his own algorithm as 

an ahead-of-his-time numerical analyst. For this reason, the following paragraph 

details how, through a table arrangement of the calculations and appropriate use 

of a calculating device, we can make the application of the method more reliable. 
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“Dactyl”-type machines are calculating devices built around a wheel 

whose number of cogs varies during calculations, invented at the end of 

the 19th century by a Swedish engineer. The characteristic that justifies 

the statement of officer Cholesky is the display quality that indicates the 

sign of the result obtained by a simple readable colour code, among 

other things.  
 

 

After this educational precision, Cholesky adopts the role of mathematician: 

We can highlight the advantages of this method of solving linear 
systems in terms of the approximation with which the results are 

obtained.  

More specifically, he goes on to compare the error made in carrying out the 

calculations at “limited precision” (i.e., with a fixed number of decimals) in his 

method where A=TtT, and in a method where we would have decomposed A, 

written as LU with L and U as two triangular matrices of coefficients (βq
p) and 

(δq
p) retrospectively. By identifying the expressions obtained for the coefficients 

of A, we thus verify that the squares of the coefficients of T in the first case are 

equal to the products of the coefficients of L and of U in the second case, which 

results in the notations of the manuscript: βq
pδq

p=(αq
p)2. An error η on each of 

the measurements leads to, in the preceding equality, errors of (βq
p+δq

p) η=2 αq
p 

η. Yet, the minimum of the function (x,y) →x+y for the pairs (x,y) verifying 

xy=a2 is obtained for x=y=a, which Cholesky himself expresses as the following: 

We know that the product βq
pδq

p, with the sum of its two factors being 
constant, reaches its minimum when they are equal. Therefore, the 

slightest error that we could introduce is 2 αq
p η. 

Cholesky can thus deduce that it is his method that is optimal (for the 

reduction of the error made as a result of imprecisions of measurement) among 

the methods based on the decomposition into products of triangular matrices3 :  

As a result, the mode of resolution of linear systems that has just been 
explained appears as the one that provides the best approximation of 
the calculations. 

Subsequently, Cholesky explains how to retain the benefit of this method by 

approximately carrying out the n square root extractions from a “table of 

squares” and some practice. The method that is proposed is attributed to Hero of 

                                                 
3. Yet, it should be mentioned that the methods for LU-type decomposition are essential for decomposing non-
symmetrical matrices. Actually, all square matrices can be decomposed as PLU, where P is a permutation 
matrix (and therefore a permutation of the rows), L a lower triangular matrix and U an upper triangular matrix. 
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Alexandria, a mathematician of the first century AD, but Cholesky seems to 

ignore it. He explains how to obtain the root of a number N by recognising an 

approximation n of error ε. As a matter of fact, in the first order the relation 

N=(n+ ε)2 becomes N=n(n+ 2ε). From there, we can deduce an expression of ε, 

and then n+ ε=(N /n+n)/2: the approximation n has been replaced by a more 

precise approximation (N /n+n)/2. Therefore, by repeating this process (which, 

in more mathematical terms, is the calculation of the recurrent sequence that is 

defined by the function x (N /x+x)/2), an approximation is obtained with the 

required precision, provided that the first approximation is sufficiently reliable. 

@@@@@@@ 

Cholesky, still concerned about the practical application, proposes a step-

by-step method of verification for solving systems, which is far from being 

unnecessary when the solution time comes close to “4 or 5 hours”: it is a 

question of marking at the end of a row, opposite the sum of coefficients of the 

corresponding row. By carrying out the operations on the rows as well as in the 

last column, we must verify for each stage that the sum on a row (the size of a 

coefficient) is zero: this invariant of calculations therefore allows us to eliminate 

any resolution errors, although it does nothing for the Cholesky method itself. 

Finally, Cholesky recalls the concrete application of his method in his 

geodetic calculations: 

By this method, several systems over 30 equations were solved and in 

particular, a system of 56 equations. This last case is part of an 
adjustment calculation of the altitudes of the primordial chains of the 

triangulation of Algeria. 

This exact method of solution is even more admirable that it contrasts with 

the repetitive methods developed in the nineteenth century by Gauss, Seidel and 

Jacobi, even though it also relies on an earlier minimisation in the sense of least 

squares. Due to the quality of this numerical analysis text, and the attention paid 

to pedagogical explanations, this text could be considered an avant-garde model. 

 

 

 

(September 2008) 

 

(Translated by John Moran, published February 2015) 


