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In one of his bestsellers, Portrait du Gulf Stream (Seuil 2005), novelist Erik 

Orsenna devotes a chapter to Gaspard-Gustave de Coriolis (1792-1843), 

concluding as follows:  “There is no indication that our Gaspard Gustave ever set 

foot on a boat or was interested in the sea. Coriolis will always be the one who 

explained the influence of Earth’s rotation on the route of winds and currents”. 

 

Figure 1: (on the left) A cyclone in the northern hemisphere (anticlockwise): 
Hurricane Olga, on 28th November 2001 in the Atlantic; (on the right) A cyclone in 
the southern hemisphere (clockwise): Australia, on 20th February 2002 - the south 

coast of Australia can be seen (images: NASA) 
 

This is how the name Coriolis became universally known; nevertheless, his 

career and other contributions are considerably less well-known, as well as how 

he came to ‘compound centrifugal forces’, to which his name would be given. 

This is what we will try to describe in this article, making sure to recall Coriolis’s 

other contributions: he was the first person to give the physics definition of the 

term work in a paper presented in 1826 to the French ‘Académie des Sciences’  

(although he was not yet a member). He was also the author of a real ‘work 

theory’ in his major and austere work, Calcul de l’effet des machines [Calculation 
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of the Effect of Machines] in 1829 and he wrote a Théorie mathématique des 

effets du jeu de billard [Mathematical Theory of the Game of Billiards] in 1835, a 

rare example in the historiography of science in which a subject is totally 

handled,1 leaving near enough no room for further possible contributions to be 

made on the matter. 

@@@@@@@ 

The birth of the ‘Coriolis force’ takes place in two other texts: 

- "Mémoire sur le principe des forces vives dans les mouvements relatifs des 

machines" [On the Principle of Kinetic Energy in the Relative Movement of 

Machines], read on 6th June 1831 at Académie des sciences, published in Journal 

de l'École polytechnique in September 1832 (book 21, volume XIII) and in 

Mémoires des savants étrangers. 

- "Mémoire sur les équations du mouvement relatif des systèmes de corps" 

[On the Equations of Relative Motion of a System of Bodies], published in Journal 

de l’École polytechnique in 1835 (book 24, volume XV). 

The second paper mentions the ‘compound centrifugal forces’, which would 

later take the name ‘Coriolis force’ [or effect]. The first paper provides the 

calculation basis for the second result, also including the new notion at that time 

of ‘inertial forces’ (forces d’entraînement). This term remained even though 

Coriolis was not credited. 

Another important difference between the two papers shows the evolution of 

Coriolis’s work: the first, as we shall see, reveals a scalar identity focusing on the 

vis viva [or kinetic energy] in the relative motion (the vis viva proposed by 

Coriolis is ½ mv²). The second reveals a more powerful and vector identity, 

focusing on the principle of dynamics in the relative motion. A posteriori, first 

paper’s result becomes a simple case, particular to that of the second: by 

projecting the vector identity onto the curve of movement, the scalar identity of 

the first paper is obtained – since the compound centrifugal force ‘does not 

work’, its projection is zero in the direction of the movement. 

 
 

 

 
                                                 
1. This work followed player and former Napoleonic army officer Mingaud’s 1820s invention of the ‘queue à 
procédé’, equipped with a hemispherical washer on the end allowing ‘retro’ effects; as the source of modern 
billiards games it profoundly changed the game – previously the cue had a square end which gave no effect. 
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POISSON PRESENTS THE FIRST PAPER AT ACADÉMIE DES SCIENCES 

A paper with an interesting approach to this “Mémoire sur le principe des 

forces vives dans les mouvements relatifs des machines” is Poisson's report from 

the meeting at the Académie des sciences, on 31st October 1831. As often 

happens, the rapporteur’s text allows for better understanding of the text since it 

draws on that which seems essential and also puts the text into perspective.  

 

Figure 2: Siméon-Denis Poisson (1781-1840). École polytechnique student, author 
of numerous contributions in mathematics, rational mechanics and mathematical physics. 

 

Poisson begins by recalling the ‘principle of live forces (vis viva)’, as posed 

by d’Alembert: 

f

f i i
mv ² mv ² 2 Fdx     (1) 

The increase of ‘live forces’, between two successive positions of the 

system, is equal to twice the integral, taken between these limits, of the forces’ 

sum with an effect on all these bodies multiplied each by the element of its 

direction; due to these forces the integral was at the time termed amount of 

action. 

Poisson continues by indicating that Coriolis established the principle of live 

forces, not in the case of absolute but relative motion, for example inside a 

machine: on the left (live forces mv²) are the relative speeds involved in this 

frame; on the right (amount of action), the inertial forces must be subtracted. 
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This leads, in Coriolis’s text, after four pages of precise calculations, to the 

following principle that he had written before formulating: 

    r r
r r e e r r

mV ² mv ²
Pcos(Pds )ds P cos(P ds )ds

2 2
  (2) 

The equation contains this theorem, that the principle of live forces still 
takes place in the relative motion at moving axes, so long as at amounts 

of action 
rrPcos( )dsPds , calculated with the given forces P and the arcs 

dsr described in this relative motion, other amounts of action are added 
which  result in forces Pe, are equal and opposite to those that ought to be 
applied to each moving point in order to make it take the motion that it 
would have if it were invariably linked to the moving axes. 

Let’s compare the two equations (1) and (2): 

- Coriolis, as always, returns the factor 2 in the denominator of the left-hand 

side of the equation (while in the case of Poisson, in (1), the multiplier is on 

the right side). Poisson, geometric follower of ‘rational mechanics’, only 

considered the ‘live forces’ defined by mv². As a teacher, Coriolis proposed to 

call live forces the quantities ½ mv²: this is the meaning that will be the 

foundation of the later notion of kinetic energy. 

- In equation (2), the first term of the right-hand side corresponds to the right-

hand side of equation (1). But another term appears in equation (2) – which 

is that of the inertial forces. Considering the similarity of form of these two 

equations, it can be considered that Coriolis’s equation (2) is a generalisation 

(as part of a relative movement) of the principle of Lagrange’s live forces. 

 

 

ANALYSIS OF THE 1831 PAPER 

This relatively complex paper has 20 pages and a six-paged appendix: a 

posteriori it appears only as a particular case of the second paper’s result but it is 

larger and more calculative than the latter, making up 13 pages – actually, the 

second paper’s results are latent in the first: in order to define the ‘compound 

centrifugal force’ Coriolis only has to resume half of his first paper’s calculations. 

From the introduction (part A), Coriolis begins by laying the groundwork for 

his result: 

...the equation of the live forces can be applied by entering the relative 
speeds, and the amounts of action or of work that also relate to relative 
motions. But in these amounts of action, also, forces that are immediately 
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given and that contribute at the absolute moment, others must be 
considered whose nature is easy to indicate: they are opposite the forces 
that ought to be applied to the material points of the system if they were 
free, to force them to conserve compared to the moving planes the 
relative positions that they have at some given point […] 

But, from the outset, Coriolis warns against the statement’s false evidence: 

[…] it would be a mistake if the proposal was regarded as obvious, even in 
this fairly simple example. It is so unobvious that these forces must be 
introduced that we would arrive at false results if we were to proceed with 
issues other than that of the live forces. 

Coriolis thus summarises the range of the paper, while anticipating, in a still 

unrecognised manner, the results of the second paper. The introduction of the 

‘inertial forces’ - and of these only - is only valid for the principle of the live 

forces, and leads to the principle of the live forces in the relative motion, stated 

in (2) above (what René Dugas2 would call ‘Coriolis’s first theorem’).  

Because any other equation of the relative motion requires, in addition to 

the inertial force, the introduction of the ‘compound centrifugal force’ (Coriolis’s 

second theorem, 1935): as this ‘does not work’, the scalar projection in the 

direction of the movement makes it disappear, thereby leading to (2).  

@@@@@@@ 

Part (B) of the paper (p.272-277), after the introduction, is the broadest 

and most theoretical. Coriolis is placed in the case of two standardised yet non-

orthogonal frames of reference, one for the fixed axes, another for the moving 

axes, and gives the relationships existing between the Cartesian coordinates of 

the same point in the two frames of reference in the most general way. Similarly, 

he expresses from a general outlook the links that exist during the movement L 

= 0, M = 0, etc., and uses Lagrange multipliers to project the expression of these 

liaisons on the moving axes. This generality is important for Coriolis, who insists 

(p.279): ‘without specifying anything on these movements’. 

This part leads to the main result of the text, ‘Coriolis’s first theorem’, 

recalled in (2) above. 

 

 

 

                                                 
2. Histoire de la mécanique, Dunod, 1950 (reprint Jacques Gabay 1996) [see chap. IV, Mouvement relatif p. 
354-367] 
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Important Misprints in the Journal de l’École Polytechnique 
 
Reading Coriolis’s papers is quite difficult from a mathematical point of 
view, but also some misprints at crucial locations force the reader 
(either the current reader or of the time) to make rectifications to 
follow his reasoning: 
- p. 273, bottom, last system of equations: replace x’, y’, z’ with x1, 

y1, z1. 
- p. 274, below, penultimate system of equations: replace on the left 

side dx with dx1; remove coefficients m in the three equations; in 
the second equation, right side, replace the second dy with d. 

- p. 274, below, last system of equations: replace on the left side de
2x 

with de
2x1 (idem for y, z). 

- p. 279, equation (C): replace v with vr. 
- p. 279, last equation, remove the first m. 
- p. 280, equation (D), cos is missing after vrve. 
- p. 281, concluding part of the equation, factor 2 is too much. 
- p. 283, last equation, d²a instead of da. 
- p. 284, last system of equations, many inconsistencies: replace (xdy 

– zdz) with (xdy – ydx), (ydz – xdy) with (ydz – zdy); only the 
second (zdx – xdz) is correct. 

- p. 291, first equation, the clues e (for inertial force) are applied to 
the speed and not mass; m is missing in the second term. 

- p. 291, second equation, mistake in the second term. 
 

@@@@@@@ 

Part (E) is the longest and the most difficult to access from the paper, 

because it does not seem to give any particular result compared to (2). Coriolis 

details the last term of formula (2), something new in the equation of the live 

forces, a term which is at the basis of Coriolis’s first theorem: 
e e r rP cos(P ds )ds . 

From the wording of his theorem he made sure to clarify: 

We will indicate later how to represent these forces and simplify the 
calculations of quantities of action owed to them [p. 277, just after the 
first theorem that introduces the inertial forces Pe].  

Let’s return to the calculation  Pecos(Pedsr)dsr, by no longer dealing 
withthe forces owed to the origin’s movement of the moving axes [p. 282] 

Coriolis only mentioned eight pages later (p. 290) the possible movement of 

the origin, to immediately cancel his effect in practice (considering an 

unchanging rectilinear motion from the origin of mobile planes. This part (E) 
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leads to the most general formula of the expression of the new term of the 

equation of the live forces, detailing this term that results from ‘inertial forces’: 


2 2
e e

e e r r

mV mv dN
P cos(P ds )ds 2 m d

2 2 dt
          (3) 

The term 
e e r rP cos(P ds )ds  making its appearance in the equation of the 

live forces of the relative movement in (2) is linked to two factors seen in (3): 

- The last term on the right represents the variation of the speed of rotation of 

the moving axes: when this is unchanging, this term is void. But Coriolis was 

keen to give the result in its greatest generality, indicated by the title of part 

(E) (“Expression générale de la quantité d’action qu’il faut introduire dans 

l’équation des forces vives, en raison du mouvement des axes mobiles” 

[General Expression of the Amount of Action that Must Be Introduced in the 

Equation of the Live Forces, Because of the Movement of the Moving Axes]). 

- The first term (always on the right-hand side of the equation) is the difference 

of the live forces due to the difference of the inertial speeds over time. This 

part of the equation is indeed closer to the traditional principle of live forces 

(1): the variation of an amount of action corresponds to the variation of the 

live forces linked to velocity, using this time the inertial velocity. 

Nevertheless, we cannot settle for this analogy with the traditional principle of 

the live forces, and a second factor must be added, which is the variation of 

the speed of the moving axes over time, represented by the second term.  

Part (E) complements the first theorem: Coriolis aims to return to a known 

expression (the first part of (3)), and see the difference caused by his theorem, 

leading him to the equation’s rightmost part (3). Coriolis's concern is noticeable 

to get as close as possible to the traditional principle of live forces, and place 

himself, in form and substance, in the Lagrangian tradition of rational mechanics. 

 

Coriolis and the Poncelet Water Wheel 

 
Jean-Victor Poncelet (1788-1867), another Ecole polytechnique 
engineer-scholar, had received in 1825 the Mechanics prize from 
Académie des sciences for the invention of his water wheel (replacing 
the traditional type of wheel). 
The major advantage of this invention, immediately adopted by 
manufacturers of wheel mills, was that water from the river or canal 
would enter tangentially at the blade (thanks to its curved shape): thus 
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all water energy was of use in the blade, whereas in the flat-bladed 
wheel (to the right, below), water arrived with an angle of attack; there 
was shock against the blade and loss of energy – productivity was not 
optimal. 

 
Figure 3: The paddelwheel (Poncelet style) of the Lütterbach mill 

(Alsace), on the left; a ‘bladed’ wheel, extract from Poncelet’s 
l’Introduction à la mécanique industrielle, on the right. 

 
Coriolis clearly does not dispute the usefulness of the curved blade 
compared to the flat blade. However, in his Calcul de l'effet des 
machines (1829), he had already found an initial mistake in the theory 

that Poncelet had made of his wheel
3
. In his 1831 article analysed here, 

Coriolis makes (p. 294) a second important objection, showing that 
similar theoretical productivity cannot be equal to 1, contrary to 
Poncelet’s claim: 

The general formulas can be applied from the preceding articles to the 
issue of the movement of water in the curved blades of M. Poncelet’s 
wheels. If we consider the blade like a canal  where the water moves 
as it is lead in an unchanging rotational motion, the value of Vr will be 
given in this case by […] 

 

[…]Following the usual form of curved blades, gravity will get closer to 
the direction of dsr, that is to say, the tangent to the canal that forms 
the blade, more during water’s descent than its ascent; it follows that  
mVr²/2 is greater than mvr²/2, and thus that the water leaves the 
wheel with a greater relative live force than what it had when entering. 

Put simply, the water encounters a weaker slope of the blade when it 
goes up than when it goes down, because in the meantime the wheel 
has turned: during the downward movement, the inclination of the 
blade is already closer to the vertical since it will soon release the water 

                                                 
3. This object was based on the fact that the model would not be known to be that of a single particle of water 
going up and down on the blade, but of a steady stream: thus ‘the particles already risen, whose speed is less, 
inhibit the movement of those that are below and have more speed’ (Coriolis, Calcul de l’effet des machines, 
1829, § 105; for discussion of this point, cf. A.Moatti’s thesis, 2011, ibid., p.120) 
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(for a given particle of water, the blade’s inclination on gathering the 
water [‘the water inlet’] is not the same as when releasing the water).  
In Poncelet's theoretical calculation, the water enters with all its speed 
on the blade (thanks to the curve) and leaves with absolutely no speed. 
Coriolis corrects this last point indicating that in accordance with the 
work on gravity (the wheel having rotated), the absolute speed on 
leaving the blade is not zero – which was inevitable to the productivity 
of 1: if water keeps an absolute speed on releasing, this means that 
this speed (this ‘live force’) has not been used in the wheel. Carnot’s 
principle tells us ‘that there is no such thing as a free lunch’ - no 
creation of live force: if water has an absolute speed that is not zero on 
leaving the blade, it carries a part of the live forces of the entire cycle… 

 

 

ANALYSIS OF THE 1835 PAPER 

Paradoxically, the 1835 article “Mémoire sur les équations du mouvement 

relatif des systèmes de corps”, with the ‘Coriolis force’ result (‘Coriolis’s second 

theorem’ to recover R. Dugas's expression), is smaller and less complex than the 

1831 article. The second article’s results are largely latent in the first article 4. 
 

Comparison with the First Paper 

From the introduction of his second paper, Coriolis recalls the limits of his 

1831 article, namely that it only applied to the principle of inertial forces – i.e., 

the scalar identity representing the motion’s energy result - and not other 

equations of relative motion, like the fundamental principle of the dynamic f = 

mγ, vector identity. Coriolis goes on to generalise the approach in his second 

paper, by asking the following questions: can we use the correction terms linked 

to inertial velocities in equations of movement other than the principle of live 

forces? If this is not the case, then can we ‘give a simple expression of the new 

terms of correction’? Coriolis answers these questions in his introduction: 

To establish any equation of relative motion of a system of bodies or any 
machine, it is enough to add to existing strengths two species of additional 
forces; the former are always those that must be taken into account for 
the equation of live forces, that is to say that they are opposite forces to 
those that […]; the latter are managed perpendicularly at relative speeds 
and at the axis of rotation of the moving planes; they are equal to twice 
the product of the angular velocity of the moving planes multiplied by the 
amount of relative motion projected on a plane perpendicular to this axis. 

                                                 
4. One can speculate that the second article, published in 1835 (or four years after the first, containing the 
seeds of later results), was written before 1835: the Journal de l’Ecole polytechnique allowed time to publish 
the articles that it received. 
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The paper from 1831 gave a scalar identity, which is that of the live forces. 

The 1835 paper gives a vector identity (which is a lot more powerful), applying 

to the vector laws of movement itself - like Newton's principle of dynamics. 

Coriolis shows immediately, in his introduction, that the 1831 result is a 

particular case of the second result, in other words it verifies the 1835 result in 

the particular case of the principle of live forces: indeed, the second correction 

terms (the ‘Coriolis force Fc’) being perpendicular to relative velocity, cosine Fc 

dsr is zero; only remaining, in the rightmost side of the principle of the live 

forces, are the first terms of correction, which are those found in the first paper. 

It is in this disappearance of these compound centrifugal forces that 
makes up the theorem that I presented to Académie des Sciences, in 
1831. It now becomes a particular case of the more general statement 
about the introduction of these composed centrifugal forces. 

 

 

 

Analysis of the Result and Comparison with the Modern 
Notations 

Coriolis’s demonstration is largely engaged in the 1831 paper. He uses an 

intermediate result of the first paper (p. 275) to lead very quickly to the second 

paper’s result (p.146), while giving the equation of motion as follows: 

2

e2

d x dy dz dL dM
m 2 rm qm X X etc.

dt dt dx dxdt
          
 

    (5) 

Let's analyse the different terms of this equation of motion, which is a 

vector equation in x, y, z (we only wrote the equation in x): 

- The identity’s leftmost term represents mγ, γ being the acceleration in the 

moving frame of reference. 

- The second rightmost term (X) represents the applied forces, measured in the 

moving frame of reference. 

- The third rightmost term (Xe) represents the corrective term of the first 

paper, as defined by Coriolis (in fact the opposite of the ‘inertial forces’). 

- Finally, the first rightmost term represents the opposite of the ‘compound 

centrifugal force’, where Coriolis gives three components on the moving axes: 
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dy dz
2 rm qm

dt dt

dz dx
2 pm rm

dt dt

dx dy
2 qm pm

dt dt

  
 
  
 
  
 

 

Here the precise expression of the coordinates of the Coriolis force is 

recognised, a force written in modern notations:  
 

2mV (vector product), the 

vector V being the velocity vector in the moving frame of reference, of 

coordinates (dx/dt, dy/dt, dz/dt), the vector  being the angular velocity of 

rotation of the ‘moving planes’, of the coordinates (p, q, r). 

Let’s also note that the equation of motion [(5) above for the coordinate x, 

and the other two equations not shown for the coordinates y et z] constitutes a 

vector equation similar to the Newtonian equation of dynamics F =m
 

. Coriolis 

rewrote a vector equation of relative motion, which is no longer F =m
 

, but two 

corrected terms that are added, Fe the inertial force, and Fc the Coriolis force: 

   
   

e cm F F F  

 
 

The Designation of ‘Compound Centrifugal Forces’ 

Coriolis uses the term ‘compound centrifugal forces ‘(plural) to indicate the 

corrective term Fc. It is interesting to see how and why Coriolis introduced this 

term, particularly because the notion of centrifugal forces is not used in the first 

paper. Coriolis’s analogy is made from the opening of the second paper. 

The latter have the greatest analogy with the ordinary centrifugal forces. 
To highlight this analogy, it is enough to note that the centrifugal force is 
equal to the amount of motion multiplied by the angular velocity of the 
tangent to the curve described, and that it is directed perpendicularly to 
speed and in the osculatory plane, i.e., also perpendicularly to the 
tangent’s axis of rotation. So, to move from these ordinary centrifugal 
forces to the second forces whose doubles enter in the preceding 
statement, only the angular velocity of the tangent is replaced with that of 
the moving planes, as is the axis of rotation’s direction of the tangent, 
with the direction of the axis of rotation of these same moving planes. 

If we try to translate this analogy into modern terms (and even though this 

analogy between centrifugal force and composed centrifugal force has now been 
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completely abandoned in the presentation and teaching of the Coriolis force), the 

following comparison can be made:  

- Simple centrifugal force: it has a scalar value mV (amount of movement 

mV multiplied by angular velocity of the tangent ); it has a direction 

perpendicular to the velocity and ‘to the axis of rotation of the tangent5’. 

- Compound centrifugal force (mV Ω
 

): it has a scalar value mV (amount 

of movement mV multiplied by angular velocity of the moving planes 6); it 

has a direction perpendicular to the velocity and ‘to the axis of rotation of the 

moving planes’. 

This is what lets Coriolis write, about the ‘compound centrifugal forces’: 

These latter forces have the greatest analogy with the ordinary centrifugal 
forces. 

If we can explain the analogy with the centrifugal force, at any moment 

Coriolis explains the use of the term ‘compound’: one might think that the speed 

of rotation  is compound – via the vector product – with the moving V’s speed.  

We will note in passing that Coriolis defines compound centrifugal force 

notion in which the double intervenes in his result, forcing him to speak each 

time of the ‘double compound centrifugal forces’. One cannot miss that he had 

previously gone against the use of the term ‘live forces’ for mv², always obliging 

to speak of the only interesting physics quality, ½mv², as ‘half the live forces’. 

We see that to move from ordinary centrifugal forces to second forces in 
which doubles enter in the equations of the relative motion, it is enough to 
replace at the same time, at the tangent’s axis of rotation, the angular 
velocity, and the amount of motion of the moving point; the moving 
planes’ axis of rotation, the angular speed of these planes, and the 
amount of motion projected onto a plane perpendicular to this axis. These 
second centrifugal forces […] can be called compound centrifugal forces. 

The modern meaning of the Coriolis force is 2mV^, with the coefficient 2; 

Coriolis himself did not take steps to include the coefficient 2 in what he refers to 

as ‘compound centrifugal forces’. 

@@@@@@@ 

We will also note the difference between the titles of the two papers: the 

first covers only “le principe des forces vives dans les mouvements relatifs des 

                                                 
5. Let’s take a material point in unchanging circular rotation around an axis perpendicular to the plane: the 
centrifugal force is orthogonal to the velocity and to the axis of rotation. 
6. It is assumed here V and  are orthogonal, which does not involve the cosine of their angle. 
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machines”; the second on “les équations du mouvement relatif des systèmes de 

corps”. The term ‘equations of movement’ takes precedence over the term 

‘principle of the live forces’, and generalises it; the term ‘relative movement of 

the system of bodies’ takes precedence over the term ‘relative movement of 

machines’, and generalises it. The impact of the second paper is a lot more 

general; as the plural disappeared in favour of the singular, the term ‘machines’ 

disappeared; and, in fact, the applications of the second paper will largely exceed 

the framework of the study of machines: the Foucault pendulum, meteorology, 

land geomagnetism involves the motion’s vector equations contained in the 

second paper – this while these applications involve neither the principle of the 

live forces nor any conservation of energy. 
 

Ampère (1830), Inertial Force and the Coriolis Force  

In an article
7
 preceding those of Coriolis, and those which this one 

cites, Ampère highlights these two forces, but in a particular case 
(figure below) and without providing any interpretation to these forces. 
 

 
Figure 4: AB tube turns in a vertical plane around point A. Sphere M is 

moving in the tube (drawing from Ampère's 1830 article) 
 

We have OM r cos i rsin j ru    
   

, 
dOM

ru r v
dt

 
  

  
 (v being the 

normal vector - sin i + cos j), deriving again (knowing that du/dt = 
’v, et dv/dt = - ’u): 

d²OM
(r u r v) (r v r v r ²u)

dt²

      
          

     
 

r u (r v r ²u) 2r v
    

       
    

  (1) 

The first term in r"u is the acceleration of the moving object in the true 
frame of reference in the tube. 

                                                 
7. ‘Dynamique. Solution d’un problème de dynamique, suivie de considérations générales sur le problème des 
forces centrales’, Annales de mathématiques pures et appliquées, 20 (1829-1830), p. 37-58. 
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The second term refers to the ‘Coriolis’s first theorem’ (1831) - it is the 
inertial acceleration. We take point N located in M although indissoubly 
linked to the tube (r’=0). We have  

ON ru
 

, then Nv r v


 
 

, and N r v r ²u
 

    
  

 

The third term in (1) corresponds to the acceleration of Coriolis
8
 applied 

to the moving object M in its own frame of reference: 

c

0 r
2 v 2 0 0 2r v

0



 



  
  
         
  
     

   
 

Formula (1) therefore brings us to the principle of the live forces with 
respect to relative motion (identical to Coriolis 1835): 

R ' R e c      
   

 

The accelerations corresponding respectively to: the one in the frame of 
reference linked to fixed axes (R’); that in the frame of reference linked 

to moving axes (R), the inertial acceleration; finally Coriolis 

acceleration. 
So, Ampère's article contains, in advance - but in a case very particular 
and unrelated to the majority of the system as studied by Coriolis - the 
results of the latter: those on the inertial force (1831) and those on the 
compound centrifugal forces (1835). 

 

 

 

FOUCAULT'S PENDULUM (1851) - AN APPLICATION? 

In his lifetime, Coriolis had the satisfaction to see the compound centrifugal 

force enter manuals on rational mechanics. But he was undoubtedly far from 

imagining what was going to happen hardly 8 years after his death – an 

astounding experimental verification of the compound centrifugal force in a 

fundamental area unrelated to the theory of machines! 

This is almost a textbook case in the history of science, where two related 

results are highlighted independently in such a short space of time (fifteen 

years). Especially since everything separates Foucault from Coriolis: Foucault 

was a physicist (cf. his experiments on the speed of light9), interested in 

astronomy, rather experimental, a self-made man (his first degree is his thesis in 
                                                 
8. In the formulas of type f = mγ, the Coriolis effect may appear either to the right, as such acceleration of 
Coriolis 2Ω^v, either be tilted to the left with the opposite signs and appears as Coriolis effect 2mv^Ω. It is 

also the inertial acceleration: for example, one of the two terms of (1), - rθ’²u, can be tilted to the other side 
and appear in mrθ’²u, indicated as centrifugal inertia force. 
9. See Jean-Jacques Samueli, ‘L’expérience du miroir tournant de Foucault’ (1853), BibNum, September 2009. 



 

           
15 

physics in 1853, at thirty four years old, also a scientific journalist (in the Journal 

des Débats) and a popularizer; Coriolis on the other hand is of a different 

generation (since twenty-seven years separate them), he was of mathematical 

training/education, rather theoretical, brilliant Ecole polytechnique civil engineer, 

with very little concern for the communication or the popularization of science10. 

 

Figure 5: The experiment of Léon Foucault's pendulum at the Pantheon in Paris, 
in 1851. This pendulum is relocated in the Pantheon in 1995 (© Illustration 

Conservatoire national des arts et métiers). 

Moreover, their paths did not cross - their results come absolutely 

independently. Dugas (op. cit.) rubs it in as follows in concluding his chapter IV 

which is dedicated to the relative movement: 

Compound centrifugal force within Coriolis and Foucault's pendulum are 
two essential conquests of mechanics, one especially of mathematical 
origin, the other the result of a brilliant physicist’s intuition, that today the 
classic papers come to a single rational explanation, born separately: it is 
therefore not the reading of Coriolis that inspired Foucault's experiment. 

Costabel11 also focused on this topic. Regarding the theoretical aspect, he 

thinks that the promoters of mechanics in the 18th century and early 19th 

century were ‘more worried about developing all mathematical consequences of 

the principles posed for the dynamic analysis of the movement that to establish a 

reflection on the impact that could have in this analysis the paid attention to the 

frame of reference of the movement’ – he stresses in this context the remarkable 

character of Coriolis's approach. Regarding the practical aspect, he indicates with 

reason that Foucault's pendulum owes more ‘to the sharp sense of 

experimentation of its author rather than a clear theoretical vision of the 

                                                 
10. See Alexandre Moatti ‘Sur le bruit du tonnerre’, BibNum analysis of a popular Coriolis text, May 2009. 
11. Pierre Costabel, Article sur la mécanique in Histoire générale des sciences. La science contemporaine 1. Le 
XIXe  siècle, Dir. René Taton, Quadrige, P.U.F. 
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problem’. And, paraphrasing Dugas in a less concise yet more academic style, he 

concludes, regarding these two results: 

Born separately, the classic papers have been bringing them together 
since the early 20th century in a single rational explanation, but if this 
took a long time to develop, this is precisely because of the difficulty in 
bringing out from these two conquests their common and essential lesson. 

   
Figure 6: Graphic explanation of Foucault's pendulum via the Coriolis force. On 
the left, the pendulum launched at noon towards 6 o'clock is deflected to its right by the 
Coriolis force, it arrives at around 7 o'clock (the red dot); the following circle, the right 
dot at 7 o'clock is replaced with a black dot: launched from this point to 1 o'clock, the 

pendulum is deflected to its right by the Coriolis force and arrives at 2 o'clock (red dot), 
and so on. On these four diagrams, in them roundtrips of the pendulum, the plane of 

oscillation of this has already made a quarter turn (NB: the representation here is 
schematic, the rotation of the plane of the pendulum is in fact done more slowly, but 

follows the same diagram). As Foucault wrote [in 1851], ‘it seemed to me that the mass 
of the pendulum could be likened to a missile that deflects towards the right when it 

moves away from the observer’ (diagram by A. Moatti) 

 

 

REICH AND THE DEVIATION OF THE BODIES TO THE EAST 

But another experimental result, less well-known nowadays and less studied 

than Foucault's pendulum, had been discovered beforehand in another context. 

Ferdinand Reich, German chemist and physicist (1799-1882) had highlighted in 

1833 the deviation of heavy bodies to the east: in a mine shaft in Freiberg 

(Saxony), of a depth of 158 m, he had measured on average, after 106 tests, a 

deviation of 28.3 mm. This deviation to the east is calculated according to the 

vector formula of Coriolis 2 v^ : it is worth 2/3T0hcos, where  is the speed 

of rotation of Earth, h the height of the fall, T0 the time of the fall (T0 = (2h/g)) 

and  the latitude of the place. Poisson himself, in a paper in 1837 to Académie 
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des sciences12, had studied this deviation, resuming Reich’s experiments – but 

doing so without making a link to Coriolis’s work, dating back two years previous. 

 

Figure 7: Representation of the Coriolis force, directed towards the east for a 
located moving object approaching the axis of rotation Earth (Fc = 2mvsin). 

To be as concise as possible to describe the Coriolis force (in the simplified case of a 
moving object on Earth’s surface, there is a choice between two equivalent assertions: 
1°/any moving object approaching Earth's axis of rotation undergoes a deviation to the 
east, while any moving object moving away undergoes is deflected westward; 2°/any 
moving object in the northern hemisphere is deflected to its right; while any mobile in 

the southern hemisphere is deflected leftward. 
 

Foucault knew this result through Poisson's article which mentions it. 

However, as he notes about this effect of deviation, ‘the pendulum presents the 

advantage to accumulate the effects and to make them pass the field of the 

theory in that of the observation13’. They are indeed remarkable experimental 

conditions ‘that minimize the amortisation of the slow oscillations (of the 

pendulum) and allow to extend for quite long enough the observation to enjoy 

'the accumulation of the effects' (Costabel, op. cit.). 

It should be noted that Foucault cites Poisson, but not Coriolis whose work 

he did not know, as we have said: his theoretical reference is that of Poisson’s 

effect of deviation. Let's also note that Foucault’s vision develops in areas 

unrelated to those of Coriolis - basic astronomy and celestial mechanics: he 

wants to demonstrate Earth’s dirunal movement, as indicated by the title of his 

1851 article in the Comptes-rendus. 

 

                                                 
12. ‘Extrait de la première partie d’un Mémoire sur le mouvement des projectiles dans l’air, en ayant égard à 
leur rotation et à l’influence du mouvement diurne de la Terre’, Comptes-rendus de l’Académie des sciences, 
1837, t.5, p.660-668 (meeting, 13th Novembre 1837).  
13. Léon Foucault, ‘Démonstration physique du mouvement de la Terre au moyen du pendule’ [Physical 
Demonstration of the Earth's Motion of Rotation, by Means of the Pendulum], Comptes-rendus de l’Académie 
des sciences, 1851, p.135-139. 
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THE BERTRAND-BABINET-DELAUNAY DEBATE ON THE EROSION OF 
WATERWAYS (1859) 

Scientific bodies have only gradually comes to accept the concept of Coriolis 

in all its generality, taking it out of its initial field of application and disregarding 

Coriolis’s demonstrative approach. After having been shown again kinematically 

and extracted from the theory of machines, Coriolis’s theorem will explain 

numerous phenomena, such as Foucault's pendulum or the erosion of waterways. 

Charles-Eugène Delaunay (1816-1872), in France, would contribute the 

most to explaining the majority of application of Coriolis’s results. In 1856, in his 

Traité de mécanique rationnelle, he writes passively and without citing Coriolis: 

The second apparent force was named compound centrifugal force. 

But the movement launched: it is in using this force that Delaunay gives 

theoretical basis to Foucault's experiment: four years after, this constitutes one 

of his first explanations in a manual. 

 
Figure 8: Charles-Eugène Delaunay (1816-1872). Ecole polytechnique student, 

astronomer and mathematician. 

@@@@@@@ 

Some time later, in 1859, a fairly virulent debate took place between Joseph 

Bertrand, Babinet and Delaunay, where the latter would decisively evoke Coriolis, 

against Bertrand 14.  

Jacques Babinet (1794-1872), himself, talks of a Foucault theorem which 

‘rectifies and completes several theories, accepted and professed by scholars of 

the first order’ whereby a free point going westward with a speed acquires ‘to the 

                                                 
14. Comptes-Rendus de l’Académie des sciences, meeting on 14th Novembre 1859, p. 685-693 ‘Seconde note 
sur l’influence du mouvement de la Terre’ [Second note on the influence of the motion of the Earth], by M. 
BERTRAND; ‘Sur le déplacement vers le nord ou vers le sud d’un mobile qui se meut librement dans une direction 
perpendiculaire au méridien’ [[On the moving towards the north or the south of a mobile that moves freely in a 
direction perpendicular to the meridian]], by M. BABINET; Observations of M. DELAUNAY on the same issue; 
Response of M. BERTRAND to M. DELAUNAY; then M. PIOBERT. 



 

           
19 

north, i.e., to the right’, a relative speed equal to asin. But it is especially 

Delaunay who opens, in Babinet's defence, a debate with Bertrand on the erosion 

of waterways - which is an application of the Coriolis force: Bertrand thought that 

only waterways directed along the meridians eroded their right bank (and not the 

waterways directed from the east to the west); Delaunay shows him otherwise. 

To do this, Delaunay explicitly makes reference to Coriolis, while focusing on 

the simplification made of his approach: 

The study of these relative movements, the search of these particularities 
that they present and that can be distinguished from absolute movements, 
is extremely delicate. The step that seems to me the most suitable to get 
there, consists of relying on a strongly ingenious theory that we owe to 
Coriolis, and that has been so simplified in recent years, that it has been 
incorporated into the ordinary teaching of rational mechanics: I want to 
talk about the theory of the apparent forces in the relative movements. 

Delaunay grants Coriolis due to his naming of the compound centrifugal 

force, that he ‘completely determined the value, direction and sense’, and that it 

(…) leads to the rotation of the plane of oscillation of the pendulum, in the 
experiment of M. Foucault; this is what produces the movements observed 
in the gyroscope of the same physicist; it is finally this that intervenes in 
the movement of waterways, and that which tends to bring the water to 
the right side of their bed. 

He gives the simplified expression of the compound centrifugal force 

2masin. The debate continues between Delaunay and Bertrand. The latter 

confirms his reluctance in using ‘Coriolis’s compound centrifugal forces’: it is 

precisely because they are ‘fictitious’ that they ‘do not seem likely to understand 

the mechanism of the phenomenon’, which Bertrand does not seem to 

understand very well himself, since he gets a wrong result on the waterways east 

to west: perhaps this is, also, for Bertrand, a way to reject his own fault onto 

Coriolis? Let’s also leave the word conclusive, particularly relevant to Delaunay: 

M. Bertrand (…) seems to be reluctant to use Coriolis’s fictitious forces to 
come to the explanation of the real phenomena that show us the existence 
of the rotation of earth. I do not claim to say that the theory of Coriolis 
alone can demonstrate it. But I have just seen that this theory leads very 
easily to a clear and precise idea of the way things should happen. I add 
that in any way that we reason, following another course, it is necessary 
that we arrive identically at the same results (…) 

Finally, it seems that this debate of 1859 at Académie des sciences, with 

this assumption of Delaunay, note the fact that it is worth assigning Coriolis the 



 

           
20 

idea and the theorization of the compound centrifugal forces15. The actual 

arguments providing a damper on Coriolis’s theory (approach by the too 

complicated dynamics, possibility to make calculations in the inertial frame of 

reference without ‘fictitious’ forces) have certainly been recognised, but the 

learned body assigned him the original idea and cites him. From this date, all 

applications pertaining to the theory of Coriolis (Foucault's pendulum, erosion of 

waterways) is clearly linked, even if we speak not of the Coriolis force but 

compound centrifugal forces. For example, in 1863, in a paper quite education at 

the Academy16, Finck explains a passage of Arago's l’Astronomie on the deviation 

of bodies while using ‘Coriolis’s theory of relative movements’, and while using 

his equations: the bend is made to use Coriolis’s results in areas that are not his. 

This force enters gradually, also, in the most academic papers of rational 

mechanics. By way of example, some decades later, Paul Appell, in his Traité de 

mécanique rationnelle of 1896, mentions the ‘compound centrifugal force’. In 

1930, the class of Paul Painlevé at l’École polytechnique mentions the ‘compound 

centrifugal force’ ten times, while even indicating during one of the occurrences 

‘compound centrifugal force or Coriolis effect’. 

 

 

THE CORIOLIS EFFECT IN METEOROLOGY 

Anders Persson specialised in the history of the Coriolis force in this area, on 

its meanings and how to present it. He connects it in an interesting way to the 

simple centrifugal force, and is also quite radical on how to explain: 

In contrast to the ‘normal’ inertia, that resists changes of movement of a 
body, the inertial force of Coriolis resists these displacements while trying, 
by circular motion, to bring back the body to its original position. Any 
mathematical or intuitive explanation of the Coriolis force that would enter 
in conflict with the notion of circular inertial motion would therefore be 
incomplete or false. 

 

                                                 
15. This is, for example, the opinion of Anders Persson, ‘How do we understand the Coriolis force?’, Bulletin of 
the American Meteorological Society, 79, n°7; Jully 1998 (PDF Princeton University) 
16. Finck, ‘Chutes des corps qui tombent d’une grande hauteur’ [Drops of Bodies that Fall From a Great Height] 
CRAS, 1863 (T.56), p. 957 et ss. 
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Figure 9: formation (anticlockwise in the northern hemisphere) of a cyclone 

around a depression. The blue arrows indicate the winds’ force of attraction, always 
towards the centre of the depression (high to low pressure); the red arrows indicate the 

Coriolis deviation, always oriented towards the right course. When the air mass 
approaches (here a quarter of the four sides), it is deflected towards its right; it is 

rotated, undergoing still the Coriolis force (this time centrifugal compared to the centre of 
the depression) opposed to the blue force, centripetal. The air masses thus twist and turn 

instead of going in a straight line towards the centre of the depression. 

 

The application of Coriolis force in the field of meteorology will not come 

from France: we have seen that our French physicists, from Foucault to 

Delaunay, have already greatly expanded the original area of application of the 

compound centrifugal force, and have gave it a legitimacy in relation to Coriolis.  

Persson dates from 1858 (at about the same era as the French debates 

between Bertrand and Delaunay) the introduction of a rotary centrifugal force in 

meteorology, spurred on by William Ferrel (1817-1891): 

If a body is moving in any direction, there is a force arising from the 
earth’s rotation, which always deflects it to the right in the northern 
hemisphere, and to the left on the southern. 

Persson's approach is interesting. Against the majority of scientists, he 

thinks that Coriolis’s approach by dynamics is, in any case for meteorology, a lot 

more productive than the kinematic approach – he regrets that Coriolis’s work 

could have been truly known only with the Jacques Gabay 1990 reissue (!). 

According to him, if the major discoveries in this field were made ‘without 

particular knowledge’ of Coriolis’s works, their dissemination had avoided in his 

opinion many incorrect meteorological interpretations - in conclusion he also pays 

tribute to Coriolis: 
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That is why he is absolutely qualified to lend thus his name to the 
eponymous force. Had he been with us today, without doubt he had would 
have been probably one of the few who understood it and taught correctly! 

We will not go further into the history of the Coriolis force in meteorology - 

particularly as it is an area that was without a doubt even more foreign to the 

concerns of Coriolis than the celestial mechanics of Foucault. In the same way 

that we could locate and date in France the granting of Coriolis’s works of the 

effects of the ‘compound centrifugal force’ (the use of this naming being as a 

clear reference to the 1835 works of Coriolis), it would be interesting to locate 

the date this concept of the compound centrifugal force, or Coriolis force, started 

to spread outside of France, in the field of meteorology namely. However, this 

goes well beyond the scope of this article. 
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