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THE REASONS FOR A CHOICE 

Choosing Argand’s Essai sur une manière de représenter les quantités 

imaginaires dans les constructions géométriques (1806) as a founding and 

representative text about a major advance in mathematics could prove risky – for 

two reasons. 

Firstly, the biographical details about Argand himself remain uncertain. We 

can restate what has often been written: Jean-Robert Argand was a Swiss 

mathematician born in Geneva in 1768, who settled in Paris as a bookseller and 

remained there until his death in 1822. But, in the re-edition of this Essai in 1874, 

published by Gauthier-Villars, J. Houël points out in his preface: 

 



           

2 

[We would have very much liked to provide our readers with a few details 

on the personage of the author of this important opuscule. In order to obtain 

these, we turned to the scholar the most well versed in the scientific history 

of Switzerland, M. R. Wolf, to whom we owe a Recueil de Biographies as 

remarkable for its deep erudition as for the appeal of the narrative. M. Wolf 

was obliging enough to immediately conduct research in Geneva, Argand’s 

home city. Unfortunately, the information he was able to procure, through 

Professor Alfred Gautier, amounts to a few lines, which we transcribe here: 

“I did indeed find the entry of birth of Jean-Robert Argand, son of Jacques 

Argand and Éve Canac, dated 22 July 1768. This is most probably the author 

of the Essay of Mathematics in question. According to what I was told by a 

person who knew his family, for many years this gentleman was a bookseller 

in Paris, and I presume it was there that he died.”] 

These details remain controversial to this day. The only thing we know for 

sure is stated by Houël in this same text: in 1813, Argand resided at 12, rue de 

Gentilly in Paris, as is indicated by the handwritten note he appended when he 

sent a copy of his Essai to Joseph-Diez Gergonne.  

 

 

 

 

 

 

 

 

 

Figure 1: Argand’s dedication to Gergonne, on the last page of  

his essay of 1806. 

 

Moreover, a piece of work completed earlier than Argand’s, but which was 

discovered much later, is considered by many historians of mathematics to be the 

true founding text of the geometric representation of imaginary numbers. This is 

the text by the Dane Caspar Wessel (1745–1818), which was published in 1799 in 

the memoirs of the Royal Danish Academy of Sciences and Letters. This essay, On 

the Analytical Representation of Direction, only really came to light at the end of 

the 19th century, in a French translation published in Denmark in 1897. There is, 

however, no mystery surrounding Wessel’s biography. 



           

3 

Nevertheless, we are taking the risk of viewing Argand’s Essai as being of 

seminal importance in the geometric representation of complex numbers. There 

are several reasons for this. 

It is often difficult to trace one’s way back to the true sources of a concept, 

given that many avenues may have led to its emergence. A founding text is thus 

considered to be the one that established the concept in the field of knowledge to 

which it pertains, and even beyond, and which laid down all the characteristics and 

implications of that concept. This was not true of Wessel’s essay, but it was of 

Argand’s. 

Furthermore, Argand’s Essai, when published in simplified and enhanced form 

in Gergonne’s Annales de mathématiques pures et appliquées in 1813,
1
 provoked 

numerous reactions and advances based on the new framework it offered to 

mathematics: it was thus a new point of departure in this science. 

Argand himself perceived the new possibilities offered by his geometric 

representation of imaginary numbers, since the following year, again in the 

Annales de Gergonne, he put forward a demonstration of the fundamental theorem 

of algebra based on the “directed lines” of his model.
2
 

Others who succeeded him attempted other generalisations in the third 

dimension which presaged the theory of quaternions, such as J. F. Français
3
 in his 

letter on the theory of imaginary numbers, with notes by Gergonne, in 1815 

(Annales de Gergonne, Tome IV, pp. 222–227). 

Argand’s work (his Essai of 1806, his articles, and those of J. F. Français seven 

years later in the Annales de Gergonne) also made a mark on mathematics through 

the answers it brought to bear – and the debates it engendered – on the broader 

philosophical question that had surrounded the use of these imaginary numbers 

since the late 16th century, namely their legitimacy in a vision of mathematics 

dominated by the geometric realism inherited from Antiquity. Argand thus 

introduced these “impossible numbers” into the framework of this realism and 

triggered a debate about the necessity thereof, which is not without significance in 

the progress of this science: those defending the abandonment of this realist 

                                                 
1. This was therefore a second revised publication (1813) of the text of 1806. 
2. Réflexions sur la nouvelle théorie des imaginaires, Annales de Gergonne, Tome V, 1814, pp. 197–209. It is 
worth recalling that the fundamental theorem of algebra (also known as d’Alembert’s or Gauss’ theorem) 
stipulates the existence of n complex roots (distinct or not) for any polynomial of a degree equal to n, and 
therefore the possibility of factorising it into the product of polynomials of degree 1. 
3. Jacques Frédéric Français (1775–1833), a soldier and mathematician, like his brother François Français (1768–
1810), was a student at the École Polytechnique (1797). At the time that concerns us here (1813), he was a 
commander and professor of military tactics at the engineering school in Metz. 
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dogma in favour of a recognition of the efficiency of algebra alone – of whom the 

spokesman was F.-J. Servois – attempted to deny the utility of Argand’s work, and 

the exchanges that occurred concerning these two visions of mathematics are 

highly illuminating for historians of mathematics of the early 19th century. It is 

therefore of great interest to us to read the two texts by Servois and Argand (as 

well as the accompanying notes by Gergonne) in the Annales de mathématiques 

pures et appliquées:  

 Lettre de M. Servois sur la théorie des imaginaires, Tome IV, pp. 228–235 

 Réflexions sur la nouvelle théorie des imaginaires, Argand, Tome V,  

  pp. 197–209 

Lastly, and unlike Wessel’s text, Argand’s work offers veritable 

demonstrations based on the geometric figure: his article is supplemented by 

many drawings, and for this reason adduces more evidence for the concept of the 

“geometric representation” of complex numbers. 

The final arguments behind our choice are borrowed from H. Valentiner, who 

wrote the preface to the 1897 edition of Wessel’s work: 

 

[Until now it was believed that, in his Essai sur une manière de représenter 

des quantités imaginaires, Paris 1806, Argand was the true founder of the 

modern representation of complex numbers such as lines with a definite 

direction. However, it has been demonstrated that Gauss had the same idea 

in 1799, and even as early as the 17th century Wallis tried to ascribe 

genuine meaning to imaginary numbers (A Treatise of Algebra, London, 

1685, chap. 66–69). It is therefore possible to plot the first trace of the 

theory in question to a much earlier time than hitherto supposed. 
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 However, of all those that have achieved some renown, Argand’s treatise 

is the one that represents the theory of imaginary numbers the most 

completely, and for that reason retains historical interest] 

 

ARGAND’S ESSAI 

The first part of Argand’s Essai sets out the mathematical advances due to 

this concept that is the geometrical representation of imaginary numbers. The rest 

of his text is a series of demonstrations of the already known properties on 

trigonometric lines, which are themselves interesting owing to the use of his new 

tool. 

As we have already mentioned, in 1813 Argand returned to the ideas 

developed in his Essai of 1806. The latter had indeed been brought to the attention 

of J. F. Français, who was then teaching at the Imperial School of Artillery and 

Engineering in Metz, who delivered his own version in an article entitled “Nouveaux 

principes de géométrique de position et interprétation géométrique des symboles 

imaginaires”, Annales de Gergonne, Tome IV, September 1813, pp. 61–72. This 

provoked a reaction from Argand (“Essai sur une manière de représenter les 

quantités imaginaires, dans les constructions géométriques”, Annales de 

Gergonne, Tome IV, November 1813, pp. 133–147), followed by the recognition 

by Français that Argand had devised these concepts before he had. Indeed, the 

two men continued to exchange news about their advances on the subject over 

the years 1813–1815. 

Argand’s Essai of 1806 cannot be studied without drawing parallels with the 

author’s revised version of 1813. The following lines are thus a synthesis of the 

comparative studies of these two texts. 

@@@@@@@ 

Argand starts from the widely accepted idea that a ratio between two 

quantities “of a kind yielding negative values” comprises two notions: 1°) that of 

the numerical relation between the absolute values; and 2°) that of the relation of 

the directions (also known as senses), a relation either of identity or opposition. 

Ultimately, the relation 
ma+a

=
 b +mb




states both the fact that 

a ma
=

b mb
 and the idea 

that “the quantity +a is, relative to the direction of the quantity -b, what the 
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direction of -ma is relative to the direction of +mb”, which can be expressed more 

simply as 
+1 1

=
1 +1




 (A). 

To document these two concepts, he provides a perfect definition of algebraic 

measure, without using the expression that is used today, and moreover does so 

by introducing the notation we now know: AB . Thus, the line AB, representing a 

number “considered in its absolute magnitude”, defines two opposite directed 

lines, AB  and BA , of the same position. In the figure below, for example, if KA 

corresponds to +1, proposition (A) above translates as: “KA is to KI what KI is to 

KA”. 

 

I K A  

Figure 2 

 

This notion of the directed line AB  is stated in the following terms by Argand 

(§ 6, p. 11): 

They will be called lines having direction or simply directed lines. They will 

be thus distinguished from absolute lines whose length only is considered 

without regard to direction. 

Argand’s idea was thus to extrapolate these concepts of absolute magnitude 

and direction to imaginary numbers, which would naturally lead to what we call 

the modulus and argument of a complex number. 

Argand considers the proportion 
+1 x

=
x -1

 and observes that no positive or 

negative number (he is of course talking about real numbers) is appropriate: if the 

quantity being sought exists, it is therefore imaginary. 

Argand thus has the idea of noting the unit taken in the direction d as 1d, and 

in the same manner seeks a direction d such that the positive direction is to d what 

the latter is to the negative direction, which, by “generalising” (A), is written as: 

d

d

1+1
=

1 -1
 (B) 

In his eyes, proportion (B) actually contains two very different identifications 

of signification and scope: a proportion of a numerical nature (
+1 1

=
1 +1




), and “a 

proportion or similitude of relations of direction analogous to that of the proportion 
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(A)”. Argand adds: “and, since one acknowledges the truth of the latter, one cannot 

refuse to also recognise the legitimacy of proportion (B)”. This was a risky 

generalisation, but it was one that would prove correct and which enabled a rapid 

advance in the representation of complex numbers. 

The fundamental principle behind his theory is based on the idea of 

proportions between directed lines: 

 

Figure 3    Figure 4 

 

In Figure 4, the direction of KA is to that of KE as KE is to the direction of KI. 

Argand writes this as 
d

d

1 (KE)+1 (KA)
=

1 (KE) -1 (KI)
 and once again sees it as a double 

proportion, i.e. a numerical proportion and a similitude of relations of direction: 

4
 

  

KE thus becomes the direction of the pure imaginary numbers (that of i), with 

KA and KI being those on which he based, by analogy, his construction of real 

positive and negative numbers. 

                                                 
4. Argand, Imaginary Quantities: Their Geometrical Representation, trans. A. S. Hardy, New York, D. Van 
Nostrand, 1881, available online here (PDF). 

K 

 B 

A’ 

 B’ 

 K’ 

K 

 A 

 B 

 A’ 

 B’ 

 K’ 

https://ia802700.us.archive.org/19/items/imaginaryquanti00argagoog/imaginaryquanti00argagoog.pdf
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In a manner analogous to this relation defined in Fig. 4, in Fig. 3 we have: 

KA K'A'
=

KB K'B'
 in direction, disregarding the absolute magnitudes, since the angles 

are equal. The analogy he uses thus leads him to consider the lines both in terms 

of their direction and their position: this is the birth of the complex plane.  

 

@@@@@@@ 

We now see the result towards which Argand is heading: under the misleading 

guise of the term “proportion”, he has constructed a hybrid being borrowed from 

both algebra and geometry, which enables him to retain the idea of proportion and 

the underlying notion of equality, but which eludes the problem of relation of order: 

where a proportion between real numbers would enable a comparison, the same 

is not true of imaginary numbers; there is a lack of permanence that is not 

identified. So long as one confined oneself to the operational rules on complex 

numbers, as had been the case since the 16th century, their set included that of 

the real numbers and furthermore fulfilled the principle of permanence, that is to 

say that the operational rules valid for real numbers remained valid (hence the 

name permanence) in the set of imaginary numbers: commutativity, distributivity, 

the role of zero, etc. But whereas the geometric representation of the real numbers 

on a straight line made it possible to report a relation of order, a “sorting” of those 

numbers, the same does not hold for directed lines and imaginary numbers (which 

are not “ordered”). There is therefore a loss of permanence in the link between the 

figure and the ordering.  

Yet in losing the latter, Argand gains something else: complex numbers, to 

all appearances, have geometric legitimacy. He pursues his work by introducing 

notations that are used today with occasionally more restricted significations. 

The direction of AB will be noted AB  or BA , depending on whether the 

directed line is directed from A towards B or from B towards A, these two directed 
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lines sharing the position that collectively designates two opposite directions: this 

is a classification of the directed lines by their positions, an idea that contains the 

notion of equivalence classes in embryonic form; it is another way of formulating 

the idea that was expressed above in the equality of the relations in the direction 

of KA, KB, K'A', K'B'. 

In fact, a third characteristic magnitude is named but does not receive the 

emphasis it deserves: absolute magnitude. At the time this was considered natural, 

since the questions relating to the definition of the concept of distance had not yet 

been posed. Yet, besides this remark, we can see that here Argand provided almost 

the first definition of the concept of a vector:
5
 we will confirm this by a detailed 

study of the operating modes on his directed lines, defined as illustrations of the 

operations on imaginary numbers. 

@@@@@@@ 

Argand defines the sum of two directed lines as we define the sum of two 

vectors. And, here again, analogy plays a preponderant role in the extension of a 

concept: starting from the geometric illustration of the addition of relative 

numbers, he extends this “by reasoning by analogy”, by suggesting the addition 

of directed lines according to the same principle: 

 

Figure 5 

 

The notations with arrow-marked segments are not Argand’s, but it is clear 

(Fig. 6) that this is indeed the addition of two vectors on a vectorial plane, as was 

the case for the relative numbers (Fig. 5) in what is known as the Chasles relation 

on algebraic measures: AC = AB +BC  

                                                 
5. Its direction is what we now call sense, its absolute magnitude its norm, and its position its direction. Our 
secondary school pupils define the vector on the basis of these three characteristics, with the “abstract” definition 
(via the concept of vector space) being postponed until a more advanced level of study. 

a 

b 

a + b A B C The relative number a + b is 
“represented” by AC 
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Figure 6 

 

But Argand further explores what would later become the “vectorial field”. He 

perfectly defines the notion of the decomposition of a vector over a basis and the 

link that exists between an orthonormal reference point and the ordered pair (1, 

-1 ), and indeed goes even further: 

A line in the given direction KP can be decomposed into two parts 

belonging to the given positions KA and KB. For that, it suffices to draw, 

onto KB, KA, lines PM, PN parallel to KA, KB, and we will have: 

KP = KM+MP = KN+NP  ; but as we have KM = NP  and KN = MP , 

and as moreover there are only these two ways to operate the proposed 

decomposition, one must conclude, in general, that if, having 

A +B = A'+B', A, A’ have the same direction a, B, B’ have the same 

direction b, with a and b not belonging to the same position, one must 

also have: A =  A′ and B =  B′ 

This partition frequently occurs when one of the positions is that of ±1  and 

the other the perpendicular position, which amounts to the separation of 

the real number and the imaginary number. (Annales, Tome IV, p. 138) 

 

Figure 7 

 

Argand finally states here that: 

Given two vectors KA  and KB  [he uses the phrases “directed lines”; 

moreover, today we would write them with arrows above them] not having 

a 

b 

A 

B 

C 

The sum of the directed lines a 

and b is “represented” by the 
directed line c = AC 

c 

a 

b 
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the same direction [he says position], then any vector KP can be 

decomposed in two ways as the sum of two vectors of the same directions 

as KA  and KB . If one takes into account the order of the decomposition, 

there is therefore uniqueness. 

There is no doubt that this is the decomposition of a vector over a basis: 

though he does not employ this term in his article in the Annales de Gergonne, he 

had used it in his Essai of 1806. The notion of the vector was of course present in 

many older works: the rule of the parallelogram had long featured in the study of 

the composition of certain movements, such as the composition of the forces 

applied to the same point, in Newton for example. 

But Argand takes this notion to another level of abstraction: his directed lines 

are abstract entities. They are connected to the representants of the figure only 

by the underlying relation of equipollence: the position is not the description of a 

perceptible quality on the figure; it is rather a concept capable of embracing an 

infinite diversity within the same whole. And the properties of decomposition and 

uniqueness seen above are valid, as he well knows, only for the abstract entity 

and not for its planar representations: a vector is unique as a class of equipollence, 

but its representations in the plane are infinite in number. This relation of 

equipollence, hinted at and used by Argand (and Wessel before him), would be 

defined and developed from 1832 onwards, independently of the results of their 

work, by the Italian Giusto Bellavitis.
6
 It was he who gave his name to this 

mathematical concept, and explored it in greater depth in numerous publications, 

particularly in the Annali delle scienze del regno Lombardo – Veneto from 1835 to 

1838.
7
 

The notion of equipollence today 

 

The notion of equipollence has not changed since it was defined by 

Bellavitis (see above) in the mid 19th century. Equipollence was 

later studied and considered as a relation of equivalence, and it was 

thus possible to define vectors more precisely (see panel below). 

The notion of vector space appeared much later: it is now possible 

to do without equipollence by defining a vector simply as an element 

in a vector space. But that’s another story… 

                                                 
6. Giusto Bellavitis (1803–1880), an Italian mathematician, defined the concept of equipollence and helped in the 
modern formulation of the concept of the vector between 1832 and 1845. When his contribution to mathematics 
(equipollence, vectors, quaternions) is mentioned, the earlier work of Argand and Français in the Annales de 
Gergonne often tends to be overlooked.  
7. An exhaustive list of Bellavitis’ work in this area can be found in Elie Cartan, 1953, pp. 344–345. 
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@@@@@@@ 

Two bipoints (or pairs of points) (A,B) and (C,D) are called 

equipollent if [AD] and [BC] have the same middle, i.e. if the 

quadrilateral ABDC (in this order) is a parallelogram (in the broad 

sense, since the definition is also valid for aligned points, and thus 

for a “flattened” quadrilateral).  

The set of all the bipoints equipollent to (A,B) thus defines a same 

and new mathematical object (in fact, a class of equivalence of this 

relation of equipollence): the vector AB . This is a definition of what 

we call a vector, which is therefore an infinite set of bipoints, 

equipollent among themselves, and of which only the 

“representants” can be shown (“drawn”). 

We owe this notion to Bellavitis, even though he did not speak in 

terms of vectors but rather of “equipollent lines”, which are in fact 

reminiscent of Argand’s “directed lines”. 

 

@@@@@@@ 

Having thus defined the addition of directed lines, which enables him to 

perfectly represent the addition of imaginary numbers, Argand turns to a way of 

representing their product: he thus describes a way of multiplying directed lines 

that respects the rules of arithmetic. In his Essai of 1806, using first the unit circle, 

he defines the construction of the “product” of the directed lines KB×KC  in the 

following manner: 

 
 

K A 

B 

C 

D 

 

Figure 8 
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8
 

9
 

 

Since this concerns representations of complex numbers of modulus 1, he 

geometrically states the fact that the argument of the product of two of these 

numbers is equal to the sum of their arguments. He himself makes note of this 

with the expression “logarithmic multiplication”. 

 

The modulus and argument of a complex number 

 

For a complex number z = a + ib, in modern notation: 

- the module is defined by z a² + b² , and corresponds to 

the length of the corresponding vector 

- the argument is defined by 
b

Arctg
a

 
   

 
 and corresponds to 

the angle subtending the corresponding vector in relation to 

the axis of the abscissas 

 

If we rewrite the above paragraph from Argand in modern 

complex notation, we write: 

KA 1,  KB cos isin ,  KC cos isin          

Multiplying, we have: 

KB KC (cos cos sin sin ) i (sin cos cos sin )              

KD KB KC cos( ) isin( )           

Following the above definition, the argument of KB (the angle 

formed by the radius KB with the axis of the abscissas KA, Fig. 8) 

is ß, and the argument of KC is γ; as for the argument of KD, 

                                                 
8. He in fact employs the notation of the time, namely savoir KA:KB::KC:KD, with :: symbolising equality. 
9. “Directed radii” = KB and KC; “radius of the product” = KD. 
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according to the last formula, it is equal to ß + γ. The argument 

of the product of KB and KC is equal to the sum of the arguments 

of KB and KC. This is what Argand (p. 41) calls a “logarithmic 

multiplication”, that is to say, the transformation of a product 

into a sum.  

Among the many applications of his method that he gives at the 

end of the text, Argand demonstrates, with his notations, that: 

cos na  sin na = (cos a  sina)n 

This identity is well known in modern notation as the Moivre 

formula (1707): 

(cos na + i sin na) = (cos a + i sin a)n 

 

@@@@@@@ 

Argand concludes his construction with directed lines that are not units (i.e. 

with complex numbers of given moduli), stating that if one wishes to effect the 

product of mKB by nKC , one simply has to construct the directed line mnKD : this 

time, he geometrically expresses the fact that the modulus of the product of two 

complex numbers is equal to the product of their moduli. 

We won’t go into further detail about the consequences of these two 

definitions, which Argand develops equally well in his two major essays. Let’s 

simply point out that he perfectly states a great many of the properties of complex 

numbers and trigonometric lines, in both their algebraic expression and their 

geometric representation. The consequences would be immense: trigonometry 

formulas became specific cases of de Moivre’s formula underlying these writings, 

sums of series would be found, and in the Annales de Gergonne
10

 Argand even 

gave a demonstration of d’Alembert’s theorem. This demonstration was far from 

satisfying since it constructed a sequence of complex numbers that is supposed to 

decrease towards 0, this convergence not being proven. 

 

THE RULE OF LINES 

As we have seen, Argand formalises the notion of the vector in modern 

terminology and ultimately establishes the correspondence between the vector 

space associated with a plane and the set of imaginary numbers. He went even 

further in his Essai of 1806: putting forward symbols specifically devoted to 

                                                 
10. Réflexions sur la nouvelle théorie des imaginaires, suivies d’une application à la démonstration d’un théorème 
d’analise, Tome V, p. 197, January 1815. 
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imaginary numbers, he ascribes to them the operational rules that ensure the 

permanence of the hitherto acknowledged operations, and even draws on the 

congruence, as the following extract shows: 
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11
 

@@@@@@@ 

A fine attempt at abstraction and generalisation for a mathematician who 

wished to better anchor the imaginary numbers in geometric reality! 

But the question remained: even if this “geometric representation” of complex 

numbers would go on to become established in the first half of the 19th century 

(thanks to Argand perhaps, but also to Gauss, and later Cauchy), did this attempt 

meet with success? We will borrow the following conclusion from Elie Cartan:
12

 

In the theory that concerns us [Argand’s], all numbers, real or imaginary, 

are defined by vectors, situated on a given plane, and having, in this place, 

a common origin O and being subject to the operations (addition, 

subtraction, multiplication, division) that one defines through suitable 

conventions. We define these conventions such that: 

1°) the operations defined enjoy the same properties as the operations of 

the algebra of real numbers [this is the principle of permanence
13

 applied 

to the laws of algebraic calculus] 

2°) in the specific case where the vectors subject to operations are carried 

by a particular oriented straight line passing through O (and which we will 

name the real axis), these operations are identical to those that have been 

                                                 
11. Argand substitutes the rule of signs with a rule of lines +, −, ~ , ~ with | crossing out the ~. Its application 

to the example given by Argand gives a multiplication of  by , i.e. an addition of the figures 1 and 3 in 

the rule of lines, which gives 4, and therefore a + sign. 

12. Elie Cartan, Œuvres complètes, Gauthier Villars, Paris, 1953, p. 340. 
13.  See above for more on the principle of permanence. 
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defined in the metric theory of real numbers [this is the principle of 

permanence applied to the laws of vector calculus]. 

Finally, Argand reproduces – by analogy, in the geometric field, and again 

respecting the principle of permanence reiterated by Cartan – the technique of 

extension that presided over the establishment of imaginary numbers and the 

operations concerning them in the field of algebra. He shifts the problem: though 

there is admittedly a figure that “translates” the properties of imaginary numbers, 

these do not always have a “reality”, in the sense that they are still not related to 

an even imperfect projection in reality, via even an approximate figure or object.
14

 

He demonstrates the adequacy of his construction in the plane with that already 

existing on the straight line, and contents himself, as his contemporaries would 

later on, with this “parallel”. Imaginary numbers would retain a certain air of 

mystery. As C. F. Gauss (1777–1855) put it poetically: 

The true meaning of √-1 reveals itself vividly before my soul, but it will 

be very difficult to express it in words, which can give only an image 

suspended in the air. (Letter to Peter Hanson, 1825) 

The truly innovative aspect of Argand’s work became apparent at a later date, 

in the underlying concepts he uses, as we saw above (vectors, “natural” 

isomorphisms, congruences, etc.), and which would shortly unify the two parallel 

fields he had just bridged. To once again cite Cartan: 

Nor does one [Argand] propose to simply interpret the imaginary solutions 

of certain equations of geometric origin, as J. Wallis, H. Kühn, and A. Q. 

Buée had attempted: such an interpretation indeed presupposes, at least in 

theory, the legitimacy of calculus with imaginary symbols. The geometric 

theory of complex numbers is a natural generalisation of the metric theory 

of irrational numbers in which each real number is defined by a segment of 

a given oriented straight line.
15

 

The cautious Argand, expecting hostile reactions (like that of Servois), replies 

in the following terms: 

The theory of which we have just given an overview may be considered from 

a point of view apt to set aside the obscure in what it presents, and which 

seems to be the primary aim, namely: to establish new notions on imaginary 

quantities. Indeed, putting to one side the question of whether these notions 

                                                 
14. For example, for the irrational number √2 a right-angled isosceles triangle of side 1, or for the transcendent 
number ∏ an approximation of the circle by regular polygons: thus, there is something in reality that “de-idealises” 
these numbers. Nothing of the sort exists for the imaginary number i, despite Argand’s work: the problem remains 
entirely unresolved simply because, in the sense of the “geometric realism” inherited from the Ancients, √-1 has 
no legitimacy and cannot acquire any. 
15. Ibid. 
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are true or false, we may restrict ourselves to viewing this theory as a 

means of research, to adopt the lines in direction only as signs of the real 

or imaginary quantities, and to see, in the usage to which we have put them, 

only the simple employment of a particular notation. For that, it 

suffices to start by demonstrating, through the first theorems of 

trigonometry, the rules of multiplication and addition given above; the 

applications will follow, and all that will remain is to examine the question 

of didactics. And if the employment of this notation were to be 

advantageous? And if it were to open up shorter and easier paths to 

demonstrate certain truths? That is what fact alone can decide.
16

 

And indeed, this is what the history of mathematics, its progress, applications 

and teaching have amply demonstrated ever since. 

 

 

 

(January 2009) 

(Translation by Helen Tomlinson, published April 2017) 

                                                 
16. Essai sur une manière de représenter les quantités imaginaires, dans les constructions géométriques, Annales, 
Tome IV, November 1813, pp. 133–147. 


