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The documents we normally analyse on this site are well-written, correct 

and pedagogical. However, one might also learn from the exceptions. The current 

document "Théorie des mouvements relatifs" published 1848 in Journal de l'École 

Polytechnique, 19, 149-154
1
 by the young mathematician Joseph Bertrand 

(1822-1900) is scientifically not quite correct, difficult to understand and 

coloured by personal prejuries. It is, however, still worth having a look at 

because the errors or weaknesses might encourage us to explain the matters in a 

more clear way and address his scientific misunderstandings in so far they are 

still with us today. 

In spite of all its weaknessess the main importance of Bertrand's mémoire 

might not have been scientific, but political; it arose the interest in relative 

motion in rotating system, that some years later resulted in the famous 

pendulum experiment by Léon Foucault (1819-1868). 

The most eye-catching aspect of Bertrand's paper is his urge to discredit a 

colleague, accusing the late Gaspard-Gustave Coriolis (1794-1843) of quasi-

plagiarism. Bertrand insinuated that Coriolis, when developing his theory of 

deflection of relative motion (the "Coriolis Effect"), borrowed ideas from the 

renowned Alexis Claude Clairaut (1713–1765) without giving him proper credit. 

                                                      
1. A summary of the mémoire,”Mémoire sur la théorie des mouvements relatifs", was presented by Bertrand to 
the Academy 21 June 1847 and published in Comptes-Rendus, 1847, 24, p. 141-42. 
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Figure 1: Joseph Bertrand (1822-1900) was in the late 1840's a rising star in 

the academic community. At the age of 17 he had been admitted to École 

Polytechnique. He continued at École des Mines which he left by distinction in 1846 to 

concentrate in mathematics and the reviewing the progress of general physics (image 

Wikipedia). 

 

 

1. CORIOLIS'S 1835 MÉMOIRE 

Coriolis had in his 1835 mémoire "Sur les équations du mouvement relatif 

des systèmes de corps" in Journal de l’École polytechnique, 24° cahier, XV, p. 

142-154 reasoned that if a body within a rotating system at distance R from the 

centre of rotation was moving with velocity Vr relative to the rotation Ω and the 

ordinary centrifugal force Ω2R (or in vector notation -Ω×(Ω×R) had to be 

supplemented with an additional force 2ΩVr (or in vector notation -2Ω×Vr) what 

Coriolis called "the composed centrifugal force" and we call the "Coriolis force". 

 

(
𝑑𝑽𝒓

𝑑𝑡
)

𝑟
= −𝜴 × (Ω × 𝑹) − 2𝜴 × 𝑽𝑟    (1) 

 

This "extension" to the centrifugal force is directed perpendicular to the 

relative motion Vr , to the right in a counter-clockwise rotation (to the left in a 
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clockwise). Because of the perpendicular direction to the motion it cannot change 

its speed (kinetic energy), only the direction
2
.  

Although both the Coriolis force and the centrifugal force are fictitious 

forces; they do not have any physical origin like gravitation, magnetic or electric 

forces, their mathematical structure is quite different. Both depend on rotation Ω, 

but the centrifugal force also depends on position R and the Coriolis force on 

relative velocity Vr. This might be the reason why they have been seen as two 

forces of independent origin. The fact that inertial, frictionless motion over the 

surface of a rotating planet can be described by the Coriolis force alone, may 

have supported this view. 

Coriolis's 1835 mémoire might be one of the few texts that make clear that 

the centrifugal force and the Coriolis force are intrinsically coupled to each other. 

Eq. (1) does therefore not only express a mathematical affinity between the two 

forces, but also a physical. 

 

2. CORIOLIS DISREGARDED 

Coriolis 1835 mémoire does not seem to have attracted much immediate 

attention among contemporary scientists. One reason might have been that his 

"composed centrifugal force" 2ΩVr did not appear crucially important. For most 

applications it amounts to a fraction of the centrifugal force Ω2R. More generally, 

they are equal when 

 

𝛺2𝑅 =  2𝛺𝑉𝑟 → 𝛺𝑅 ≡ 𝑈 = 2𝑉𝑟    (2) 

 

i.e. when the relative velocity Vr is twice the rotational velocity U. On a 

carousel with Ω = 2 rad/sec (one orbit in 3.14 second) the Coriolis force is, for a 

0.5 m/s moving object, stronger than the centrifugal force only within 50 

centimeters from the centre of rotation.  

When Coriolis published his mémoire, Siméon Denis Poisson (1781–1840), 

was working, or was about to start working, on the deflection of artillery 

grenades. That would result in 1837 in a mémoire « Extrait de la 1ère partie d'un 

Mémoire sur le mouvement des projectiles dans l'air, en ayant égard à leur 

                                                      
2. In a previous BibNum contribution (A. Persson, “How Newton might have derived the Coriolis acceleration?”, 
July 2017), the non-trivial problems to give this a graphical presentation are discussed. 
 

http://www.bibnum.education.fr/physique/mecanique/newton-t-il-derive-l-acceleration-de-coriolis
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rotation et à l'influence du mouvement diurne de la Terre », Comptes Rendus des 

Séances de l'Académie des Sciences, 5, 660-667.  

Poisson did not seem to have taken impression of Coriolis paper, at least it 

is not referred to in his work. It might be more likely that Poisson relied on the 

works by Laplace (1749-1827) who in the 1770's had derived the full equations 

of motions on a rotating planet and in 1803 together with Friedrich Gauss (1777-

1855) estimated the deflection of falling objects
3
. 

 

3. BERTRAND'S 1848 MEMOIRE  

Bertrand's mémoire started with some thoughtful reflexions: 

Trop souvent, après avoir étudié la mécanique analytique, on croirait faire 

une chose inutile en cherchant à compléter l'étude de cette science par la 

lecture des travaux épars dont les prédécesseurs de Lagrange ont enrichi 

les recueils académiques du XVIIIe siècle. Je crois que cette tendance, 

malheureusement très-générale, est de nature à nuire aux progrès de la 

mécanique, et qu'elle a déjà produit de fâcheux résultats : la trop grande 

habitude de tout déduire des formules fait perdre jusqu'à un certain point 

le sentiment net et précis des vérités mécaniques considérées en elles-

mêmes...
4
 

[Too often, after having studied analytic mechanics, one would think it 

would be useless to attempt to complete the study of this science by 

reading the scattered works of which the predecessors of Lagrange have 

enriched the academic collections of the 18th century. I believe that this 

tendency, unfortunately very common, is likely to be detrimental to the 

progress of mechanics, and that it has already produced unfortunate 

results. The too common habit of deducing everything from formulas is to 

a certain extent a loss of the clear and precise feeling of the mechanical 

truths considered in themselves.] 

 

These thoughts came to him after having read two articles, written within a 

century's interval. One was Coriolis's 1835 mémoire, the other was a mémoire by 

the renowned scientist Alexis Claude Clairaut. The latter had addressed, in 1742, 

the problem about relative motion in a rotating system some thoughts in "Sur 

                                                      
3. See a previous BibNum contribution presenting and analyzing this text (A. Persson, “Proving that the Earth 
rotates by measuring the deflection of objects dropped in a deep mine The French-German mathematical 
contest between Pierre Simon de Laplace and Friedrich Gauß 1803”,  August 2014). 
4. See also A. Moatti, Le Mystère Coriolis, CNRS Editions, 2014, p. 107. 

http://www.bibnum.education.fr/physique/mecanique/sur-le-mouvement-d-un-corps-qui-tombe-d-une-grande-hauteur
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quelques principes donnant la solution d'un grand nombre de problèmes” Mém. 

Acad. Sci. Berlin, pt. 1 (1742): 370-72. 

Bertrand had to his surprise found that Coriolis, "without knowing it, had 

done the same as the illustrious Clairaut": 

M. Coriolis […] s'est rencontré, sans le savoir, avec l'illustre Clairaut, qui 

[…] avait résolu plusieurs problèmes, en faisant précisément usage du 

principe de M. Coriolis". 

Mais ce principe qui, dans le Mémoire plus récent [Coriolis] n'est démontré 

que par des calculs compliqués, semble à Clairaut tellement évident, qu'il 

néglige d'entrer dans le détail des raisonnements synthétiques qui l'y ont 

conduit, et se borne à en énoncer en quelques lignes le principe. 

[But this principle, in the most recent mémoire [by Coriolis] only 

demonstrated with complicated calculations, seemed so obvious to 

Clairaut, that he neglects to go into the details of the synthetic reasoning 

which led him there and confines himself to stating the principle in a few 

lines.] 

 

Figure 2: Alexis Claude Clairaut (1713-1765), a key scientist of his time, was 

instrumental in establishing the validity of the principles and results that Isaac 

Newton had outlined in the Principia. He was therefore one of the prominent 

members in the 1736-1737 expedition to Lapland to measure the shape of the earth and 

thereby confirm Newton's hypothesis that it was flattened at the poles (engraved portrait 

by C.-N. Cochin & L.J. Cathelin, from a drawing by Carmontelle; Wikimedia Commons).  

 

And Bertrand goes on: 
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Ainsi se trouvent mis en évidence, de la manière la plus nette, les 

avantages et les dangers que présentent en mécanique les raisonnements 

a priori : ils sont la plupart du temps plus rapides, toujours plus 

satisfaisants pour l'esprit; mais Clairaut lui-même est exposé à s'y 

tromper. 

[In this way, the advantages and the dangers presented in mechanics by a 

priori reasoning are most clearly shown: they are for the most part 

quicker, always more satisfying to the mind, but even Clairaut himself is 

liable to make a mistake.] 

Le but que je me propose ici est d'exposer avec détail la démonstration 

trop peu connue de Clairaut, de la rectifier en montrant pourquoi le 

théorème dont il est question ne s’applique qu'au principe des forces 

vives, et de faire voir enfin comment, en suivant les idées de Clairaut, on 

parvient sans aucun calcul à la notion des forces centrifuges composées, 

introduites par M. Coriolis dans son second Mémoire sur les mouvements 

relatifs. 

[The goal I propose here is to expose in detail Clairaut's little-known 

demonstration, to rectify it by showing why the theorem in question only 

applies to the principle of the living forces, and finally to show how, 

following the ideas of Clairaut, we arrive without any calculation to the 

notion of composite centrifugal forces, introduced by M. Coriolis in his 

second Memoir on relative motions.] 

 

 

4. CLAIRAUT'S 1742 MÉMOIRE 

In his first chapter "Pour trouver les Mouvemens des systèmes de Corps 

entraînez avec les plans sur lesquels ils sont placez", Clairaut envisaged a 

rectangle moving along a curved trajectory while at the same time a body is 

moving inside the rectangle (figure 3).  
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Figure 3: How Clairaut tried to visualize relative motion, the body M moving 

along μ on a rectangle FGHI gliding on two curved "rails" AB and CD with equal 

speed on both.  

 

Clairaut now made the opposite corner-points G and I move with the same 

velocity. This turned out to be a crucial mistake. Even if the rectangle followed a 

curved trajectory, it would not necessarily mean that it rotated. That a curved 

motion does not necessarily involve rotation is schematically explained in figure 

figure 4.  

 

 

Figure 4: A schematic image of the difference between translational and 

rotational motion. A curved motion does not have to involve rotation (lower left). On 

the other hand a translational motion can very well involve rotation (lower right). 
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Bertrand identified Clairaut's mistake, and even highlighted the crucial 

sentence: “[on laissât] le plan FGHI se mouvoir uniformément et en ligne droite" 

which expressed an inaccurate idea, corrected by Bertrand: 

On sait, en effet, fort bien, qu'un système abandonné à lui-même ne se 

meut pas d'un mouvement rectiligne et uniforme; c'est pour cette raison 

que la conclusion à laquelle parvient Clairaut n'est pas exacte
5
. 

[We know, indeed, very well, that a system left to itself does not move 

with a rectilinear and uniform movement, it is for this reason that the 

conclusion reached by Clairaut is not accurate.] 

René Dugas was in his A History of Mechanics (p. 354-57)
6
 not only 

apprehensive about Clairaut's model (as he labelled "incomplete"), he was not 

willing to follow Bertrand's "corrected" version either. However, the present 

author is not quite happy with Dugas's version. Below is an attempt to explain 

what Bertrand had in mind, taking Dugas's version into some account. 

 

5. RELATIVE MOTION UNDER ROTATION 

We define a coordinate system with x- and y-axes and origin in M', where 

there is also an object M (figure 5). 

 

Figure 5: The defined coordinate system x,y with origin M' and a point M at the origin 

free to move in any direction. 

 

                                                      
5. Here Bertrand must have mistakenly have left out some words such "a system under rotation", since his 
formulation is against Newton's first law! 
6. (New York: Dover, 1955), transl. from R. Dugas, Histoire de la mécanique (1950) 
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Bertrand now subjected this coordinate system to a combination of 

translation and rotation, while the point M moved rectilinearly in an arbitrary 

direction.  We will first only consider the translation of the origin from M' to K, 

while at the same time M moves, with the same speed, to point P (figure 6). 

 

Figure 6: The coordinate system is translated from M' to K, while object M is rectilinearly 

moving to P, both with speeds υa = υe.  

 

Seen from the frame of reference of the coordinate system, now labeled 

x',y', the body has moved slightly backward (figure 7). 

 

 

Figure 7: Seen from the frame of reference of the coordinate system, the body has 

moved slightly backward, or to the left of the y-axis, with a relative velocity υr. 
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However, while being translated the coordinate system has also been 

rotated with an angular velocity of ω rad/sec (figure 8). 

 

 

Figure 8: The coordinate system, while being translated is also rotated anti-clockwise 

with angular velocity ω. 

 

Seen from the coordinate system the point M ends up at a different 

location relative to the coordinate system, now labeled x'', y'' (figure 9). 

 

Figure 9: Seen from the frame of reference of the coordinate system, the body has 

moved slightly forward, or to the right of the y-axis, with a relative velocity υr. 

 

The change of position, can be seen as the result of a clock-wise 

(rotational) acceleration a to the right over a distance υrdt·ωdt (figure 10). 
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Figure 10: The relative motion υr in the rotating coordinate system has resulted in a 

clockwise deflection or acceleration covering a distance υrdt·ωdt. 

 

The deflection, expressed as occurring over a distance S, can be 

formulated in two ways 

𝑆 =  𝜐𝑟𝑑𝑡 · 𝜔𝑑𝑡 =  
𝑎∙𝑑𝑡2

2
     (3a) 

where a is an acceleration. This yields  

 

a = 2ω·υr       (3b) 

 

which is the scalar version of the Coriolis term. 

 

 

6. PROS AND CONS OF THE "SIMPLIFIED DERIVATION" 

Later in the 19th century Bertrand's derivation became known as "the 

simplified derivation" of the Coriolis force. As such we normally meet it in this 

design (figure 11). 
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Figure 11: A schematic version of Bertrand's derivation: a body M is moving radially 

from the centre of rotation M', while the underlying platform (coordinate system) rotates 

counter clockwise an angle ωdt. This leads to a deflection PK of  ωdt·νrdt and finally to 

the 2ωvr term. 

 

Bertrand's derivation is mathematically and physically correct and is found 

in many popular textbooks as an intuitive explanation of the Coriolis effect. 

But there is a caveat. The simplicity has come with a price: it is a special 

case. It is only valid at, or very close to the centre of rotation of the carousel. 

Here the distance to the center of rotation dr ≈ 0 and the centrifugal force, 

dependent on the distance, is therefore also ≈ 0. 

This condition, closeness to the centre of rotation, is often violated in 

textbooks. The moving body is depicted to start its journey clearly away from the 

centre of rotation. It means that the version below, although geometrically 

correct, is physically incorrect (figure 12). 



 

         
  

13 

 

Figure 12: The erroneous application of Bertrand's "simplified" derivation of the Coriolis 

force, far away from the centre of rotation. 

 

Away from the center of rotation there is, according to equation (1), with 

increasing distance R, an increasing centrifugal force, which is missing in figure 

12.  

 

7. IS BERTRAND'S DERIVATION APPLICABLE ON THE ROTATING EARTH? 

So far we have only considered a rotating carousel; but what about the 

rotating Earth? Many textbooks illustrate the Coriolis effect with polar bears at 

the North Pole walking southward. Isn't this in line with Bertrand's derivation? 

Yes and no. The centrifugal force is zero at the poles, just as in Bertrand's 

derivation. But whereas in Bertrand's version we can neglect the centrifugal force 

only there, on the Earth we can disregard the horizontal component of the 

centrifugal force everywhere! 
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This is not covered by Bertrand's mathematics. Although the trajectory of 

an object moving over the surface of a rotating planet may be described by the 

2ΩVr term alone, the centrifugal force is nevertheless present. It is, however, 

due to the Earth's non-spherity (caused by the rotation), balanced by a 

component of gravitation directed in the opposite direction.  

We hope to come back to this in a special article since it was a topic of 

discussion at the Academy in autumn 1859. 

 

 

8. A LITMUS TEST FOR THE CORIOLIS EFFECT  

To orientate oneself among the different "derivations" of the Coriolis effect 

the following rule might be useful: Since the Coriolis force is perpendicular to the 

motion, and constant in strength for a constant velocity, it will act as a "central 

force" and therefore drive all motion into circular trajectories, so called "inertia 

circles" (figure 13).  

 

Figure 13: By being perpendicular to the motion (Vr) of an object the Coriolis deflection 

will drive it into an "inertia circle" trajectory. Its radius ρ is calculated considering that 

2ΩVr also can be seen as a centripetal force  Vr
2/ρ. 

 

If the derivation does not, mathematically or conceptually, yield a circular 

motion, the derivation is incomplete, misleading or erroneous. So for example if 

a centrifugal force is also present, the trajectory will be an ever increasing 

Archimedean spiral (figure 14).  
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Figure 14: The Coriolis force alone on a counter-clockwise rotating carousel (green area) 

would ideally have kept the moving body in a circular trajectory close to the centre of 

rotation (red line). Instead the body will gradually, due to the centrifugal force, 

accelerate outwards (blue line). 

 

But what can be said about the curved trajectory M´P in figure 11? Is it 

part of a circle, an "inertia circle", or not? Since the acceleration we derived is 

2ΩVr and is perpendicular (in the infinitesimal dr → 0) we can trust that the 

trajectory is part of an "inertia circle". 

But this is a 100% logical approach, not very intuitive. To make it more 

intuitively plausible that the curve is part of a circle, we have to make two 

compromises. The first is to abandon the infinitesimal viewpoint as being too 

counter-intuitive. The differentials should therefore be interpreted as non-

infinitesimal entities. 

But then the centrifugal force would make itself apparent, so the next 

compromise is to abandon the dynamic-physical approach for a kinematic-

geometrical. 

@@@@@@@ 

We can first note that the deflection of the moving object is twice the 

change of direction due to rotation alone (figure 15). 
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Figure 15: The tangent PM’’ measures the deflective angle 2ωdt which is twice the 

change of direction due to the rotation ωdt. 

 

When the rotational angle has increased to 90⁰ (PM’ is perpendicular to 

M’K) the deflective angle is 180⁰, i.e. PM’’ is parallel to the line M’K. 

Figure 16 below is not a proof, but an attempt to provide kinematic-

geometrical arguments that the trajectory is part of an inertia circle, with half the 

radius of the bigger rotating platform (the outer circle in figure 16). 
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Figure 16: To the left a simplified copy of figure 15, to the right the same geometrical 

figure inserted in the total rotational system. When this system has rotated 90⁰ (PM´ is 

perpendicular to M’K) the direction of the deflected motion (along PM’’) is parallel to its 

original direction (along M’K) and the moving object has followed a semi-circle, half of an 

"inertia circle". 

 

An alternative way to illustrate the importance of the infinitesimal distance 

to the centre of rotation is shown in figure 17 where an object is moving over a 

rotating carousel. Let's assume the rotation of the carousel is one revolution in 8 

seconds which yields Ω = 2/8 = /4, the radius of the carousel 2 meters and the 

velocity 1 m/s. Under "ideal" conditions, i.e. with only the Coriolis force and no 

centrifugal force, this would for 1 m/s motion anywhere on the surface of the 

carousel yield a circular trajectory with the radius ρ = 2/ ≈ 0.6 meters. 

Under normal, non-ideal conditions, an object is moving straight over the 

rotating carousel, passing exactly over the centre of rotation. Outside the centre 

of rotation there is an influence of the centrifugal force which prevents the 

trajectory from being a "pure" inertia circle, and instead becomes a "loop". At or 
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infinitesimally close to the centre of rotation the curvature of the loop, however, 

agrees well with the radius of an "ideal" inertia circle. 

 

Figure 17: An object is moving over an anti-clockwise rotating carousel passing exactly 

over its centre of rotation (blue line with blue filled circles). As seen from an absolute 

frame of reference the trajectory is a straight line (above), seen from the relative frame 

of reference on the carousel the trajectory is a loop (below). At (or infinitesimally close 

to) the centre of rotation the curvature of the trajectory agrees with the curvature of an 

inertia circle (red dashed line), for the ideal case of "pure" Coriolis deflection, without any 

influence of a centrifugal force. 
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It is a popular laboratory exercise to roll balls over a rotating carousel and 

observe the deflection. With figure 17 in mind the students can make the ball 

pass over or well beside the centre of rotation and note the more or less quasi-

inertia circle trajectories that will result. 

A note of caution: the ideal object is not a ball, but an object that will slide 

along the surface of the carousel, like an ice-hockey puck. The reason why rolling 

a ball is less suitable if because the ball's angular momentum, due to the spin, 

will slightly complicate the motion. 

 

9. PEER REVIEW OF BERTRAND'S MÉMOIRE 

As Bertrand was at that time not yet a member of the Institute, his 

mémoire was reviewed by three distinguished mathematicians: Augustin-Louis 

Cauchy (1789-1857), Gabriel Lamé (1795-1870) and Charles Combes (1801-72). 

In their "Rapport sur un Mémoire de M. J. Bertrand concernant la théorie des 

mouvements relatifs", Comptes Rendus des Séances de l'Académie des Sciences. 

Paris,  27, 210-213 dated 21 June 1848, they approved Bertrand's paper which 

they found had been written "dans un excellent esprit". 

Although the theorem as such was not new, they wrote, the nature of 

Bertrand's explanation improved the understanding of its extent and utility. Their 

next sentence happens to encompass more or less the objectives of this BibNum 

project: 

Le fruit que M. Bertrand a tiré de la lecture des ouvrages des 

géomètres de la fin du VIIe et de la première moitié du XVIIIe siècle, 

engagera sans doute les jeunes mathématiciens à étudier les œuvres, 

peut-être trop négligées aujourd'hui, de ces grands maîtres de la science. 

[The fruit that Bertrand has drawn from the reading of the works of the 

mathematicians of the late 18th and first half of the 19th century, will 

undoubtedly engage young mathematicians to study the works, perhaps 

too neglected today, of these great masters of science.] 

They did not, however, agree that Coriolis plagiarized Clairaut: "Coriolis, 

n'avait pas lu le Mémoire de Clairaut", whose reasoning is anyhow “en défaut”. 

To demonstrate how easy it is to suspect a plagiarism, when there is none, they 

took a recent book on mechanics by Jean-Baptiste Bélanger Cours de Mécanique 
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(it had just been published and contained a discussion of Coriolis's theorem); the 

reviewers opine: 

Ainsi MM. Bertrand et Bélanger ont pu arriver au même résultat, à peu 

près en même temps, et par des méthodes semblables, sans qu'aucun 

d'eux eût connaissance des travaux de l'autre. 

[Thus Bertrand and Bélanger were able to arrive at the same result, at 

about the same time, and by similar methods, without any of them having 

knowledge of the works of the other.] 

Bertrand had presented his mémoire the 21 June 1847, when Bélanger's 

book was still in press
7
. 

 

10. THE AFTERMATH OF THE 1848 DISCUSSION 

Joseph Bertrand had made a correct analysis of deflection of relative 

motion in a rotational system. But the analysis was incomplete in the sense that 

is was a special case. Bertrand therefore never quite understood the deeper 

implications. This became apparent some ten years later when the Academy 

devoted a major part of autumn 1859 to discuss the problem of the Earth's 

rotation and its affect on moving objects. In polemic with his academic 

colleagues Bertrand maintained, for example, that the deflection only works for 

north-south motion. 

This view was not only supported by a popular but erroneous explanation, 

the so-called Dove-Hadley derivation. It had been promoted by the influential 

German meteorologist Heinrich Dove (1803-79) but later named after the British 

meteorologists George Hadley (1685-1768)
8
.  

Another source of misunderstanding came from the Baltic-German scientist 

Karl Ernst van Baer (1792-1876). In 1835 he had tried to explain the 

meandering of the south to north flowing Siberian rivers as a consequence of the 

Earth's rotation
9
. So Bertrand was not alone with his misunderstandings.  

The 1851 Foucault pendulum experiment, where the deflection was 

independent of the direction of the motion, should have clarified the matter. But 

some scientists held on to their erroneous view, while others changed them 

                                                      
7. It is the opinion of this author that Coriolis most probably had read Clairaut's mémoire, but did not find 
anything useful in its contents. 
8. See figure 7 in our BibNum article, December 2014, analysing a Sarrabat’s text. 
9. See our BibNum article, July 2015, “Albert Einstein et la tasse de thé de Mme Schrödinger ».  

http://www.bibnum.education.fr/sciences-de-la-terre/meteorologie/dissertation-sur-les-causes-et-les-variations-des-vents
http://www.bibnum.education.fr/sciences-de-la-terre/meteorologie/albert-einstein-et-la-tasse-de-de-mme-schrodinger
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without really understanding why. One strong argument for many, has it been 

said, was that the Seine and the Loire rivers were also meandering – and they 

were both flowing from east to west! 

There seems to be a general opinion that Coriolis's 1835 mémoire got its 

well deserved attention only in 1851 after Foucault's pendulum experiment.
10

 It 

might rather have been the debate and controversy around Bertrand's 1848 

mémoire that increased the attention and interest in Coriolis's work. In a public 

lecture the following year Jacques Babinet (1794-1872) explained how the 

Earth's rotation affected the ocean currents. In the audience was Léon Foucault, 

a gifted journalists and popularizer, who not only wrote a review in Journal des 

Débats (June 30th, 1849) but also started to think about how the earth's rotation 

affected motions over its surface…  

 

 

 

 (January 2019) 

 

 

 

                                                      
10 A mention by Frédric Reech's "Mémoire sur les machines à vapeur et leur application à la navigation" where 
Coriolis is credited of having found "un beau théoreme" seems to refer to Coriolis' 1832 « Mémoire sur le 
principe des forces vives dans les mouvements relatifs des machines » in Journal de l'École 
Polytechnique, vol. 13, no 21, p. 268-302. 


