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The 1905 edition of the German scientific journal Annalen der Physik has become 

famous for publishing Albert Einstein's five ground breaking articles which would 

open the door for "modern physics". It is less well-known that in the same 1905 

edition of Annalen there was a heated debate between three Central European 

scientists
1
 on the true understanding of the Coriolis Effect. When the three didn't 

reach any agreement, the Editor-in-Chief, Max Planck, asked them to continue 

their discussion somewhere else
2
. 

Today we are proud ourselves of having a fair understanding of quantum 

mechanics and relativity theory – but what still baffles our minds is the Coriolis 

Effect! No wonder that Alexandre Moatti gave his biography of Gaspard-Gustave 

Coriolis (1794-1843) the title Le Mystère Coriolis
3
.  

 

1. CORIOLIS’S MEMOIRE OF 1835 

In the 1830s, with the industrial revolution in full swing, Coriolis became 

interested in the dynamics of machines with rotating parts. How much did the 

centrifugal force, and thus the strain on the machine, change when a part of the 

machine was also moving relative to the rotation? 

In his 1835 mémoire Coriolis showed that in a machine that was rotating with 

an angular velocity Ω where a part was moving relative to the rotation with velocity 

Vr, one had to add to the ordinary centrifugal force Ω²R or U²/R (where R is the 

distance to the rotational axis and U the rotational speed) a supplementary force 

2ΩVr. This additional force, which much later became known as the "Coriolis 

                                                           
1. One German and two Austrians, who today would have been regarded as Polish, Czech and Ukrainian.   
2. Which they did and turned to Physikalische Zeitschrift in 1906 until its Editor-In-Chief got tired of them as 
well! 
3. His book (CNRS Editions, 2014) and his BibNum contribution (October 2011) contain a detailed review of 
Coriolis's 1835 mémoire "Sur les équations du mouvement relatif des systèmes de corps" Journal de l’École 
polytechnique, 24° cahier, XV, cahier XXIV, p. 142-154. It suffices here just to recapitulate the general idea. 

 

http://www.bibnum.education.fr/physique/mecanique/sur-les-equations-du-mouvement-relatif-des-systemes-de-corps
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force", was independent of R and perpendicular to the relative motion Vr. In a 

counter-clockwise rotation it was directed to the right (to the left in a clockwise). 

Because of the right angle deflection of the motion it could not change its speed 

(its kinetic energy), only the direction. Coriolis called this additional force "the 

composed centrifugal force". 

It will be argued here that the problems over 180 years to understand this 

"Coriolis force" stems not only from mistaken approaches to conceptually consider 

it in isolation, independently of the centrifugal force, but also attempts to visualize 

it in a relative frame of reference. It is here that ideas from Isaac Newton's 

Principia may come to rescue. 

 

2. DEPICTING FICTITIOUS FORCES 

In the standard vector derivation (relative acceleration in a rotating system 

Ω of a relative motion Vr at a distance R), the two forces are organically linked to 

each other (see eq 1): 

(
𝑑𝑉𝑟

𝑑𝑡
)

𝑟𝑒𝑙
= (

𝑑𝑉

𝑑𝑡
)

𝑓𝑖𝑥
− 𝛺×(𝛺×𝑟) − 2𝛺×𝑉𝑟   (1) 

Although the Coriolis term – 2Ω×Vr – appears to have a different 

mathematical structure than the centrifugal term Ω×(Ω×R), they are physically of 

the same centrifugal nature
4
.  

2.1 An erroneous depiction of the centrifugal force 

Another source of misconception is how we tend to erroneously visualize 

fictitious forces, not only the Coriolis force but also the centrifugal force. A popular 

way to depict the latter is by an image which contains the relevant parameters, 

the rotational velocity U, the distance to the centre of rotation R and the rotation 

Ω (here anticlockwise). It could look something like this, with the centrifugal force 

pointing away along a line passing through the centre of rotation (figure 1). 

                                                           
4. The centrifugal term can also be written as a product of the angular rotation (Ω) and a velocity, in this case 
the angular velocity  (U=Ω×R). 
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Figure 1: A common popular, but misleading, image of the relation between an object in 

curved motion (U) and the centrifugal force (Ce) at distance R from the centre of rotation 

Ω. The image is crossed over because it is not quite correct. 

 

But doing so we are mixing two different frames of reference. The trajectory 

of the motion is displayed in an absolute frame of reference, as seen from outside. 

But the centrifugal force can only be experienced from "inside" and can only be 

depicted in a relative frame of reference.  

Still the picture makes some "common sense" since, riding on a carousel or 

in a bus taking a curve, we can visually estimate the curvature. The forces we feel 

are "inside" the carousel or the bus, but our eyes reach "outside".  

2.2 A correct but uninteresting depiction of the centrifugal force 

But imagine that we are blindfolded – or travel by night in high-tech smoothly 

running train. Now it is almost impossible to find out in which direction the train 

is moving (backward or forward?). We notice when the train takes a curve only 

because the centrifugal force pushes us in one direction, and if we sit properly our 

seat provides an opposite directed centripetal force that keeps us in place. This is 

then what we will experience with our senses (figure 2): 
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Figure 2: The same motion as in figure 1 but now depicted only in a relative frame of 

motion, following the moving object, and not in an absolute frame of reference where it 

is seen from outside the object. 

This physically correct image might, however, appear a bit "dull" and 

"uninteresting". There is, for example, no information about the curvature of the 

motion or if it is forward or backward. 

 

2.3 An erroneous depiction of the Coriolis force 

If we still, stubbornly, insist on an erroneous, but "easily understood" image 

of the Coriolis deflection it could look something like this (figure 3): 

 

Figure 3: An easily understood, but misleading, image of the Coriolis force as one of the 

two components of a decomposed centrifugal force. 

 

With an inward motion Vr the trajectory of the absolute motion is no longer 

exactly along the rotation but spirals radially inwards, towards the centre of 

rotation. The centrifugal action, perpendicular to the trajectory, is no longer 

pointing along a line passing through the centre of rotation.  
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We decompose the vector Ce into two vectors. One is passing straight through 

the centre of rotation and is the "ordinary" centrifugal force Ω²R. The other is 

perpendicular and that is Coriolis’ "composed centrifugal force" 2ΩVr. Since the 

relative motion Vr is radial inwards, we can also see that this additional force is 

pointing to the right of the relative motion, for anticlockwise rotation (like the 

Earth's). 

We are faced with a contradiction, on one hand an "understandable" but 

incorrect image, on the other hand a correct image which doesn't make much 

"common sense". But there is a solution – we abandon the relative frames of 

references and only use absolute frames of reference. 

 

3. DEPICTION OF FORCES IN AN ABSOLUTE FRAME OF REFERENCE 

By a strange international convention the "Coriolis acceleration" is not the 

Coriolis force per mass unit, but an acceleration, linked to the centripetal 

acceleration, due to a real force, pointing in the opposite direction to the Coriolis 

force – just like the centripetal force is pointing in the opposite direction to the 

centrifugal force! 

To start with the latter it is the action of an inward central force U²/R (figure 

4). 

 

Figure 4: A constant centripetal force of magnitude Ω²R drives an object into a circular 

motion. Instead of an outward centrifugal force because of the curved motion, we 

have a curved motion because of an inward centripetal force. 

 

The inward spiralling trajectory due to a tangential velocity U and a radial 

velocity V, can now be seen as the result of an inward centripetal force, which can 

be decomposed into one ordinary centripetal force, directed to the centre of 
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rotation, and a perpendicular force, now orientated to the left of the relative radial 

motion, the Coriolis acceleration (figure 5). 

 

Figure 5: To make the tangentially moving body also move radially inward a centripetal 

acceleration has to be applied, which is the sum of the ordinary centripetal acceleration 

and the Coriolis acceleration. 

It can also be said that the Coriolis acceleration has to be applied on a moving 

object to avoid it being deflected by the Coriolis force. To understand the Coriolis 

deflecting mechanism by studying the Coriolis acceleration in an absolute frame 

of reference may sound controversial, but we have a powerful supporter in Sir 

Isaac Newton, author of Principia! 

 

4. THE USE OF GEOMETRY IN NEWTON'S PRINCIPIA 

The world famous Principia is available in translations in most languages. Still, 

few of us have read the book, or even opened it. This is a pity because just 

glancing through the pages gives a surprising revelation: there are no algebraic 

equations, only Euclidian geometry. By using Euclidian geometry, Newton thought 

that his results would be more easily understood, at least in his time (figure 6a). 
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Figure 6a: A map from the French edition of Principia displaying all of the figures in Part 

I. The figure we will be particularly interested in is "Fig.13" in the middle. 

We will give an example of Newton's Euclidian approach that is related to the 

problem of calculating the centripetal force. It also illustrates the mathematical 

beauty of his reasoning. 
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Figure 6b: One of the pages in Principia with the geometrical construction Isaac Newton 

used to prove Kepler's Second Law, which is the same as conservation of angular 

momentum. 
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Figure 6c: Before Principia, Newton made a shorter text called "De motu corporum in 

gyrum", where he tested some of his ideas. 

 

5. APPLYING NEWTON'S METHOD  

Let a body move without friction rectilinearly from A to c over B, B being the 

middle of the segment (figure 7). 

.  

Figure 7: A body is moving without friction rectilinearly from A to B (a) and then from B 

to C (b). In terms of distance, AB = Bc. Newton's notations are used. 
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Newton showed early on in Principia that the radius vector of a body moving 

rectilinearly under inertia during equal times covers equal areas and thus obeys 

Kepler's Second Law (Figure 8). 

 
Figure 8: The radius vector of the body's motion in relation to point S covers in equal 

times equal areas (green and yellow) in accordance with Kepler's second law.  

Newton assumed that the body at B was subject to an impulsive force which, 

had it been alone, would have moved the body in a new direction (figure 9a). But 

in combination with the original motion the body will move in a combination of the 

two directions (Figure 9b). 

 

Figure 9: An impulsive force pushes the body at B in the direction of V (a). The resulting 

motion to C is a combination of the motions from B to V and B to c (b).  
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From figure 8 we saw that the green and yellow triangles have equal areas. 

But what about the new red-dashed triangle SBC in figure 10? 

 

Figure 10: The area BSC covered by radius vector during the motion from B to C (red 

dashed line) will be shown to have the same area as the yellow area BSc covered by 

radius vector during the motion from B to c. 

Newton showed that since both have the same base SB, and the same height 

CC’ (equal to cc’), their areas are equal (figure 11). 

 
Figure 11: Newton's proof that the areas BSC = BSc 

 

Although the body has deviated from its rectilinear motion into a curved 

motion, it still fulfils Kepler's Second law by having its radius vector cover equal 

areas in equal times (figure 12). 
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Figure 12: The body moving from A to C over B has its radii vectors cover equal areas 

in equal times according to Kepler's Second Law. 

Newton then applied the same reasoning for subsequent time steps: in every 

point C, D, E and F the body was affected by an impulsive force pointing to the 

same central point C (figure 13). 

 

Figure 13: Figure 12 inserted in its context in Newton's Principia. 

Kepler's Second Law, also called ‘The Area Law’ was in the 1600s and most 

of the 1700s thought to apply only to celestial objects (planets, moons, comets 

etc). But already in Principia, Newton showed that the same laws of motion which 
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guide the heavenly objects also are active on Earth, among them the Area’s Law, 

which we today call "conservation of angular momentum". 

 

6. NEWTON AND THE CENTRIPETAL FORCE 

Long before Newton thought about deriving Kepler's Second Law, he was 

interested in calculating the centripetal force. The centrifugal force had been 

calculated by Huygens in 1659 and Newton's first attempts dates from before 1669 

(when he was less than 27 years old).  

It is quite fascinating how he used the little-known Proposition 36 from Book 

III of Euclid’s Elements. Here Euclid proved that a rectangle constructed over the 

diameter CE and the short distance CD has the same area as the quadrate defined 

by the length BC (figure 14a). 

Thus CE × CD = (BC)². We now apply it on for our purpose more relevant 

symbols in figure 14b). 

 

2𝑟 ∙  ∆𝑟 = (𝑢 ∙  ∆𝑡)2        (2a) 

∆𝑟 =  
𝑢2∙(∆𝑡)2

2𝑟
=

𝑢2

𝑟
∙

(∆𝑡)2

2
       (2b) 

𝑎𝑐𝑐 =
  𝑢2

𝑟
         (2c) 

 

which is the equation for the centripetal force (per mass unit). 
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Figure 14: How Isaac Newton derived the centripetal force from Euclid's proposition 36 

in Book III with his notations to the left (14 a), the ones applicable to this article to the 

right (figure 14 b). 

 

Newton's Principia might have been a relatively "easy read" 300 years ago, 

but for a modern reader the geometrical language is not immediately 

comprehensible. On the other hand, any effort seems to be highly rewarded by 

these beautiful Euclidian proofs! 

 

7. SOME CORIOLIS DERIVATIONS À LA NEWTON 

Inspired by Newton we will now apply a geometrial approach to derive the 

centripetal acceleration and the Coriolis acceleration for tangential and radial 

motions in an absolute frame of reference. 

7.1 Tangential motion 

We will first derive an expression for the centripetal force, using more or less 

the same approach as Isaac Newton in his pre-1669 paper (figure 15). 

 

Figure 15: A geometrial derivation of the centripetal force.  

A body is carried around with a rotation Ω at a constant distance r from the 

centre of rotation O. An inward directed centripetal acceleration a makes the body 

deflect an inward distance Δs over time Δt. Without this inward force the object 

would move rectilinearly from A to B under inertia Ω·r·Δt. Following Pythagoras 

theorem applied to ABO triangle, we have (Ω·r·Δt)² + r² = (Δs + r)² which yields, 
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by neglecting second order terms, Δs  = (Ω·r·Δt)²/2r = a·(Δt)²/2, which results in 

a = Ω²r, the centripetal acceleration. 

To the tangential motion ΩR is now added a tangential velocity u (figure 16). 

 

Figure 16: Derivation of the centripetal force (per unit mass) for a relatively tangentially 

moving body with a speed different from the speed of rotation (see test for details). 

The centripetal force is as above: the tangential motion u is added to Ω·r 

((Ω·r + u)Δt)² + r² = (Δs1 + r)²   (3a) 

which yields after neglecting quadratic terms: 

(u·Δt)² + 2u.r.Ω·Δt² + (Ω·r·Δt)² = 2 Δs1·r (3b) 

Δs1 = (Ω²·r + 2Ω·u + u²/r) Δt²/2    (3c) 

i.e. the centripetal acceleration Ω²·r, the Coriolis acceleration 2Ω·u and a so-

called "metric acceleration term" u²/r. This term turns up in the simplest of the 

Coriolis force derivations (see below) and we will now for a short while return to 

the relative frame of references where centrifugal forces exist. 

7.2 "Metric" terms 

The centrifugal force (per unit mass) (Ce) on an object at distance R from the 

centre of rotation is Ce = U²/R, where U = ΩR is the tangential rotational speed. 

In the case of a relative tangential motion ur, the total centrifugal force becomes 

(𝑈+𝑢𝑟)2

𝑅
=

(𝛺𝑅+𝑢𝑟)2

𝑅
=  𝛺2𝑅 + 2𝛺𝑢𝑟 +

  𝑢𝑟
2

𝑅
    (4) 

where the first term is the ordinary centrifugal force Ω²R and the second term 

the Coriolis force 2Ωur. The last metric term ur²/R is often explained as a reflection 
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of the chosen coordinate system
5
. For normal velocities it is always weaker than 

the Coriolis term. They are equal when 

2𝛺 · 𝑢𝑟 =
  𝑢𝑟

2

𝑅
→ 𝑢𝑟 = 2𝑈     (5) 

where U is the speed of rotation ΩR. 

In the geophysical sciences, where R refers to the radius of the Earth, the 

metric term is often disregarded since ur²/R ≪ 2Ω·ur when ur does not exceed 100 

m/s. But this mathematical-numerical argument misses the physical reason why 

the metric term can be disregarded in many practical applications. Although it 

does not contain Ω, and therefore is not related to the rotation, it is nevertheless 

not without a physical meaning.  We may note its "centrifugal nature", i.e. a 

squared velocity divided by a distance. This reminds us that centrifugal forces do 

not only appear with rotation, but any curved motion. 

 

Figure 17: Free relative motion vr over a rotating platform (a) and constrained curved 

motion v over a non-rotating platform (b).  

In figure 17a (left) a body is moving freely over a rotating platform (e.g. a 

carousel) and is affected by an outward centrifugal force of Ω²R = 2 m/s² and a 

Coriolis force 2Ωvr = 2 m/s². In figure 17b the platform is stationary but the body's 

motion is constrained, like in equation (2) above, perhaps by some rail (e.g. a 

children's toy train). The centrifugal force here is not due to any rotation, but is 

due to the curved motion. 

 

7.3 The metric terms in geophysics 

The physical rational for discarding the metric terms is not because ur²/R ≪ 

2Ω·ur  but because the motions of the oceans currents and atmospheric winds are 

                                                           
5. Other metric terms might appear in a three dimensional spherical coordinate system where, with R in the 
denominator, the numerator can take the form v2, uv, w2, uw and vw, where v=radial motion and w=vertical. 
This is because each of the three equations, one for each dimension, expresses constrained motions along a 
latitude, longitude or in the vertical. When the three dimensional derivation is made in vectorial form the metric 
terms do not appear. 
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not constrained. However, a TGV train between Rennes and Paris is constrained 

to follow the rails and will experience a sideways acceleration both due the Coriolis 

term and the metric term (figure 18).  

 

Figure 18: A TGV train is running on a straight rail from Rennes to Paris at 47-48°  

latitude. With a speed of ur = 90 m/s and at a distance from the Earth rotational axis of 

4262 kilometers it is affected by two southward accelerations together 8.2 mm/s². One 

is due to the Coriolis effect (6.79 mm/s²) and the other to the curvature of the latitude 

(1.43 mm/s²). The latter acceleration, always directed towards the equator
6
, would be 

present also on a non-rotating Earth. If the train had run in the opposite direction, from 

east to west, the Coriolis force 2Ωsin(latitude)ur per mass unit would be directed in the 

opposite direction, towards the north and the total acceleration, now northward, would 

be 5.36 mm/s².  

An ice hockey puck gliding frictionless over the ice doesn't seem to be on a 

constrained motion, but it is, like most other bodies on our Earth, constrained by 

gravity and the solid surface's reaction force to remain on the Earth's surface. 

Moving with a speed Vr it will everywhere on the Earth experience a vertical 

upward acceleration  

𝑎 =
  𝑉𝑟

2

𝑅
    (6) 

which added to the vertical Coriolis effect accounts for the so called "Eötvös 

effect", which makes east-moving bodies lighter and west-moving bodies heavier
7
. 

Geodists have to take this into account when they measure the Earth's gravity 

from a moving platform. Now back to the "Coriolis force" and accelerations in an 

absolute frame of reference. 

                                                           
6. The accelerations due to both the Coriolis term and the metric term are directed perpendicular to the Earth's 
axis, and allowance has here been made for their local, horizontal component by a multiplication of the cosine 
of latitude. 
7. In contrast to the metric term, the vertical Coriolis effect 2Ωurcos(latitude) is only dependent on the east-west 
motion ur. 
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7.4 Radial motion 

A body is moving with the rotation Ω from A to C, while simultaneously 

moving radially inward to G with velocity v, covering the distance Δr = v·Δt. (figure 

19a) 

 

Figure 19a: A body moving from A is taking part in the rotation while at the same time 

moving radially inward which leads to an arrival at G instead of C.  

Without inward motion the body would cover an arc AC = r·Ω·Δt ≈ HC (figure 

19b). 

 

Figure 19b: The calculation of the deflected distance Δs2  
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Using infinitesimal calculus allows us to regard the arcs AC ≈ HC and FG ≈ 

EG. With a deflection Δs2  we have EG + Δs2 = HC which yields Δs2 =HC – EG ≈ 

AC – FG = r·Ω·Δt – (r – Δr)·Ω·Δt = Δr·Ω·Δt = a·Δt²/2, with a = 2Ω·Δr/Δt = 2Ω·v 

as the left directed acceleration.  

 

8. KEPLER'S SECOND LAW AGAIN 

Finally, let's go back to where we started, with Isaac Newton's geometrical 

derivation in Principia of Kepler's Second Law, "loi des aires", or conservation of 

angular momentum. Denoted L angular momentum is the product of the angular 

velocity R × Ω and the distance to the rotational centre R  

L = R × (R × Ω) 

(per unit mass) where R is the distance to the centre of rotation Ω. L and can 

often be treated as a scalar (L) since the rotational axis and the arm or lever are 

perpendicular to each other (as with spinning tops, ice skaters, ballet dancers and 

carousels). Then  

L = R²Ω 

Angular momentum is conserved if there is no torque, no force acting in the 

direction of the rotation. In the case above there is indeed a force acting counter 

to the rotation, the force that creates the Coriolis acceleration. Continuing to 

approximate the arcs with straight lines, we can see that in figure 17a the area 

EGO is smaller than the area HCO, meaning that the angular momentum has not 

been conserved but has decreased (figure 20a). 

 
Figure 20a: The area covered by the inward motion (red triangle) is smaller than the 

area covered by unaffected rotational movement (green area). 
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However, with no torque the motion continues to D and the area covered by 

the motion has expanded and we can, with the same argument as Newton, easily 

prove that area EDO = area HCO and angular momentum is conserved (figure 

20b). 

 

Fig 20 b: The same as figure 17a but with no torque acting angular momentum is 

conserved. 

In the above example the angular velocity has increased. This agrees with 

familiar observations of spinning ballet dancers or ice skaters contracting their 

arms and spinning faster. The increase in kinetic energy derives from the work 

the ballet dancer or ice skater does with their muscles against the centrifugal 

force. So just because angular momentum is conserved, the rotational kinetic 

energy is not
8
. 

 

9. THE BEAUTY WITH MATHEMATICS 

Newton's Principia and in particular his proof of Kepler's Second Law has 

fascinated many physicists, among them Richard Feynman (1918-1988) who used 

                                                           
8. This by the way goes back to a mémoire by Coriolis (1831), « Mémoire sur le principe des forces vives dans 
les mouvements relatifs des Machines », see BibNum. 

https://www.bibnum.education.fr/physique/mecanique/sur-les-equations-du-mouvement-relatif-des-systemes-de-corps
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it in chapter 2 of his book The Character of Physical Law (Penguin, 1964), among 

other examples, to clarify the relation of mathematics to physics: 

Another thing, a very strange one, that is interesting in the relation of 

mathematics to physics, is the fact that by mathematical arguments you 

can show that it is possible to start from many apparently different starting 

points, and yet come to the same thing. (p.50) 

He then showed how the law of gravitation could be formulated in three 

seemingly different ways: as Newton's Law, as the local field method and as a 

variational "minimum principle". 

They are equivalent scientifically... But psychologically they are very 

different in two ways. First, philosophically you like them or do not like 

them. Second, psychologically they are different because they are 

completely inequivalent when you are trying to guess new laws. (p. 53) 

The same is true for the mathematical derivations of the Coriolis effect: they 

are different, but yield the same result. You are free to choose the one you like 

and, at every instant, the one that helps you to draw new conclusions or even, as 

Feynman puts it: "guess new laws".  
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